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Abstract— The use of 3D range sensors for human position 

tracking has grown in recent years, especially for augmenting 

robotic sensing for human-robot interaction. However, extrinsic 

calibration of the relative positions of 3D range sensors is 

difficult, due to their limited range, narrow field of view, and 

distortion at large distances. 2D laser range finders have also 

been used for pedestrian tracking, providing greater accuracy 

and coverage at the cost of being more expensive and susceptible 

to occlusion. In this work, we present two novel techniques for 

calibrating the positions of 3D range sensors based on shared 

observations of pedestrians. The first technique uses 3D range 

sensors alone, and the second technique uses 2D and 3D range 

sensors together, using the high precision and long range of the 

2D sensors to complement the short-range but richer sensing of 

3D range sensors. We evaluate the accuracy of both automatic 

calibration techniques, and we furthermore show that the 

combination of 2D and 3D sensors gives more robust and 

accurate calibration than when using 3D sensors alone. 

Index Terms —person tracking, laser range finders, 3D 

range sensors, sensor calibration 

 

I. INTRODUCTION 

A. Pedestrian Tracking with Range Sensors 

For robots operating in real social environments, accurate 

tracking of people is important for safety, motion planning, 

and effective human-robot interaction. Although 

short-distance tracking with on-board sensors such as [1] may 

be sufficient for basic robot safety, wide-area tracking 

provided by external sensors can help avoid deadlock in 

crowded environments [2], analysis and anticipation of 

pedestrian behavior [3], dynamic path planning to approach 

people [4], and other interactions with humans, such as 

“friendly patrolling” [5], and handing out flyers [6]. Finally, 

position tracking systems have been shown to be important 

even for stationary robots such as a seated android, in order to 

support tasks like gaze control and eye contact [7]. 

Although many techniques have been used for pedestrian 

tracking, such as video-based tracking, motion-capture 

systems, and others [8, 9], 2D laser range finders (LRF’s) 

such as the Hokuyo UTM series and 3D range sensors such as 

the Microsoft Kinect or Asus Xtion PRO (Fig. 1) are growing 

in popularity for robust tracking of large numbers of 

pedestrians in real social spaces. 2D range sensors can scan 

 
  

large areas with high precision, but are more susceptible to 

occlusion in crowds, whereas ceiling-mounted 3D range 

sensors collect richer data and are less affected by occlusions, 

but their sensing range is quite limited.  

Many systems have been developed for the study of human 

interactions using LRF’s [10-13] and 3D range sensors both 

on-board the robot [14] and mounted in the environment in 

various configurations [15-17]. For any such multiple-sensor 

configurations, the problem of extrinsic sensor calibration is 

important, with direct impact on the tracking accuracy the 

system can provide. This work will focus on ceiling-mounted 

3D range sensors and waist-height 2D LRF’s [18, 19].  

In this work we present two techniques developed for a 

calibration software tool we call “SNAPCAT-3D” (Sensor 

Network Automated Position Calibration and Alignment 

Tool). First, we present a practical technique for calibration of 

a network of ceiling-mounted 3D range sensors in 6 degrees 

of freedom (DOF) based on pedestrian observations. We then 

propose a second technique, in which the addition of 2D 

LRF’s can be used to improve the 3D sensor calibration by 

greatly increasing the connectivity of the network and hence 

the number of shared observations. 

B. Related work 

The problem of calibrating sensor positions has been 

addressed for several kinds of sensors. For example, Senior et 

al. developed a visual technique for automatic video camera 

calibration [20], and reference [21] provides a survey of 

available techniques for sensor localization for ubiquitous 

computing applications. However, to our knowledge a 6-DOF 

calibration technique applicable to ceiling-mounted 3D range 

sensors has not yet been developed. 

In previous work, we developed a technique for calibration 

of 2D sensors [22], wherein the optimal positions of sensors 

are computed to minimize the error between shared 

observations of pedestrians from different sensors. A similar 
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Figure 1. Left: Portable pole with laser range finder for 2D tracking system. 

Right: Ceiling-mounted 3D range sensors (Kinect) used for pedestrian 
tracking. 
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technique has been proposed by Schenk et al. [23]. In this 

work we build upon our previous technique, addressing new 

issues specific to the calibration of 3D sensors. 

II. DESIGN CONSIDERATIONS 

Ceiling-mounted 3D range sensors pose several challenges 

preventing the use of common sensor calibration methods. 

1) Point cloud matching 

One approach for calibration might be to do a registration 

of the point clouds of static objects in the background, 

between all sensors. This approach would be similar to that 

taken with multiple 3D scans obtained using SLAM or other 

methods, e.g. [24].  However, there are several reasons why 

this approach cannot be used in the present scenario.  

First, the point clouds themselves are distorted. Because 

our sensors are mounted on the ceiling to track people’s 

heads, static background objects are typically located beyond 

the nominal range of the sensors. At such distances, there are 

many missing measurements, the measurements are more 

affected by noise, and range distortion occurs. Distortion of 

distant points varies between sensors, and even within one 

sensor over time [25]. 

Second, it is often difficult or impossible to identify shared 

features between the sensors. In part, this is because the 

sensors are fixed and have a relatively narrow field of view. 

In addition, the sensors mostly see floors and walls, which do 

not provide useful features for point cloud matching. 

2) Floor plane extraction 

Using the floor plane as a reference also appears 

promising, at least for calibrating pitch, roll, and height of the 

sensors, but as the floor is typically far beyond the nominal 

range of the sensor, distortion of measurements is again a 

problem.  Furthermore, there is no way of resolving the 

ambiguity between observations of floors and walls.  

3) Markers 

Another option is to place markers in the environment, as 3 

or more markers at known positions enable the 6D pose of 

one sensor to be calculated [26]. However, given the presence 

of distortion and noise and the large number of sensors to be 

calibrated, a large number of markers will be necessary to 

achieve good calibration. Using pedestrians as references 

achieves this goal with lower effort and less specialized 

equipment compared with fixed markers. Additionally, if the 

purpose of the tracking system is to observe a natural social 

environment such as a shopping mall or classroom, then it is 

preferable not to disturb the business or social environment 

with markers or calibration targets. 

4) Hybrid sensing networks 

In the case that 2D and 3D sensors are used together for 

tracking, it is necessary to calibrate sensors of both types in a 

shared coordinate system. This poses the problem of how to 

create shared observations visible to both kinds of sensors, as 

the nature of the data is quite different between sensor types. 

5) Proposed solution 

In this work, we focus on using observations of pedestrians 

for sensor calibration, because the pedestrian head 

observations are typically within the nominal range of 

ceiling-mounted 3D range sensors and thus do not suffer from 

distortion. Furthermore, because pedestrians move over time, 

it is easy to identify them as shared observations between 

sensors, and it is possible to generate shared observations 

even for sensor pairs which have a small overlap. Finally, by 

using passive detection of natural pedestrian motion as the 

input to the system, it is possible to perform calibration 

without being invasive to the environment.  

Regarding the use of 2D and 3D sensors together, 

pedestrian observations are ideal for use as shared 

observations between the different types of sensors, as the 

systems are already designed to detect pedestrians. 

Furthermore, we will show that although the 3D sensors 

suffer from a low degree of overlap, the addition of 2D 

sensors, which have a much wider coverage area, can greatly 

improve the number of shared observations, resulting in a 

higher level of calibration accuracy. 

III. TRACKING INFRASTRUCTURE 

To provide a context for the proposed calibration 

techniques, we will first present some details of the tracking 

infrastructure. 

A. Sensing System Architecture 

An experiment room in our laboratory was used for all 

evaluations in this study. It was instrumented with 28 Asus 

Xtion PRO LIVE 3D range sensors mounted in rows on the 

ceiling at a height of 2.6 m, and 6 Hokuyo UTM LRF’s 

mounted at a height of 86 cm, covering a tracking area 13 m 

long by 7.5 m wide.  Fig. 2 shows the overall room layout. 

Data from the 3D sensors was captured by 8 desktop PC’s, 

 
 

 
Figure 2. Photo and layout diagram of sensor room, showing approximate 

positions of 28 3D sensors and 6 2D sensors. 
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with up to four sensors connected to each PC. Data from the 

2D sensors was captured by Asus Eee PC netbooks, with one 

PC dedicated to each sensor. 

All data was streamed over a wired network to a Core i5 PC 

running tracking software written in Java. The calibration 

software was also written in Java and run on a Core i7 PC. For 

purposes of documentation and repeatability of results, 

offline processing was used for this study, but in practice we 

also use the software online with live data to calibrate our 

sensor environments. 

B. Sensor Arrangement 

1) 3D range sensors 

As Fig. 2 shows, we typically arrange the 3D range sensors 

upside-down in rows facing in alternate directions, as can be 

seen in Fig 3. Sensors are placed in order to minimize 

interference and maximize coverage. Figure 4 shows the 

overlap between these coverage areas when the sensors are 

arranged to cover an entire room. The small degree of overlap 

makes calibration difficult, as there are only a few shared 

observations between adjacent sensors. 

These sensors are not used for full-body skeleton tracking, 

but rather for detecting the tops of people’s heads. Details of 

the head detection algorithm can be found in [18]. To attain 

optimal coverage of the head plane, the sensors are adjusted 

by hand to aim at an angle of approximately 30-60 degrees 

from the horizontal, with the precise angle chosen to fit the 

particular room and sensor configuration. If this angle is too 

shallow (near the horizontal), the sensor will not be able to 

see the tops of people’s heads, but if it is too steep, the 

effective sensing area will be very small.  

2) 2D laser range finders 

The 2D laser range finders are mounted atop metal poles at 

a height of 86 cm, as shown in Fig. 1 (left).  This height was 

chosen for optimal visibility - the waist is a larger target than 

the legs and more easily resolved at greater distances. The 

sensors are rigidly mounted so that their scans cover a 

horizontal plane, making pitch and roll effectively fixed at 

zero, as long as the sensors are placed on a level floor. 

The sensor poles are portable, so their (𝑥, 𝑦) position and 

yaw angle 𝜙 must be calibrated each time they are manually 

placed in a new position. 

C. Tracking Algorithm 

The tracking algorithm used in this work combines the 2D 

tracking technique presented in [19] and the 3D tracking 

technique presented in [18]. For details of the tracking 

algorithms please refer to the original publications. 

Both systems use a background subtraction technique to 

segment foreground data. From this data the top of the head 

(for 3D sensors) or the estimated body center at waist level 

(for 2D sensors) are extracted. Detections from multiple 

sensors are then combined using a particle filter to track each 

pedestrian. 

Variants of this tracking system have been used in many 

environments, including shopping centers, an elementary 

school, and several laboratory settings, and the 2D version of 

the tracking system is currently available as a commercial 

product
1
. 

IV. CALIBRATION WITH 3D SENSORS 

In this section, we will present our technique for 6-DOF 

calibration of 3D sensors based on pedestrian observations. 

A. Overview 

The problem we are concerned with here is that of 

calibrating a set of 3D sensors within 6 degrees of freedom: 

namely, spatial position (𝑥, 𝑦, 𝑧) , and angles 𝜙 (yaw), 

𝜃 (pitch), and 𝜓 (roll), as illustrated in Fig. 5. 

We solve this problem in two steps as follows: first, we 

perform pitch-roll-z calibration for each of the 3D sensors 

individually, using the level plane formed by pedestrian head 

detections to find each sensor’s 𝜃 , 𝜓 , and 𝑧  parameters, 

presented in Sec. IV-B. 

The next step is to find a planar transformation which 

solves for 𝑥, 𝑦, and 𝜙  for all of the sensors. This relative 

 
1The system is sold by ATR-Promotions under the name ATRacker. 

http://www.atr-p.com/products/HumanTracker.html (Japanese only) 

 
Figure 3. Arrangement of ceiling-mounted 3D range sensors (Asus). Sensors 

are inverted and mounted at an angle to maximize the coverage of the 

tracking system. 

 
Figure 4. Left: The viewable area at head height for each 3D sensor is 
approximately trapezoidal. Right: Approximate coverage map for the 28 

sensors in our sensor room, showing the regions of overlap between sensors. 

 

           
 Figure 5. Sensor-centric coordinate system for 3D sensors.
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x-y-yaw calibration, presented in Sec. IV-C, is achieved by 

identifying shared observations between the sensors and 

calculating the transformations which minimize the error 

between shared observations. Finally, the entire sensor 

network is aligned to a global coordinate system through 

absolute x-y-yaw calibration, described in Sec. IV-D. This 

procedure is summarized in Fig. 6. 

B. Pitch-Roll-Z Calibration 

To compute 𝜃, 𝜓, and 𝑧 for each of the 3D sensors, we 

record detections of a pedestrian walking in the space, and we 

use the fact that the observations of the top of the pedestrian’s 

head will approximate a level plane – we assume the high 

frequency vertical head motion while walking will average 

out over time. Furthermore, if the pedestrian’s height is also 

known, then we can specify the height of the plane. 

It should be noted that our technique for detecting the top 

of a person’s head, details of which are explained in [18], 

requires an a priori estimate of the sensor’s pose, in particular 

its pitch. In practice, we do not consider this to be a problem, 

as approximate sensor poses can easily be estimated by eye. 

Approximate positions can be used as long as the head 

direction is up and the sensor is not too tilted in 𝜓. More 

tilting will give larger errors, as the top of the head will not be 

extracted correctly.  

To begin the calibration procedure, we fit a plane to the 

head observations, as shown in Fig. 7, using the random 

sample consensus (RANSAC) technique [27] to find the best 

fit while ignoring outliers caused by poor reflectivity or 

mistaken detections. 

Once the plane has been defined, we can determine the 

rotation angles in 𝜃 and 𝜓 necessary to align it with a level 

ground plane. As illustrated in Fig. 8, the composite rotation 

angle Ω𝑟  can be determined as the dot product of the normal 

vector 𝒏𝒔⃗⃗⃗⃗  from the head plane and 𝒏𝒛⃗⃗⃗⃗  from the level 

ground-truth plane. The rotation Ω𝑟  can then be achieved by a 

composition of rotations 𝜃𝑟 and 𝜓𝑟 . 

After applying these rotations, each sensor’s coordinate 

frame is level with respect to the ground plane. We next 

translate the head plane along the z-axis until its height 

matches the known height of the pedestrian. In this way, the 

parameters (𝜃, 𝜓, 𝑧) are defined for each of the 3D sensors. 

All head detections are then re-projected according to the 

updated pose of each sensor. 

C. Relative X-Y-Yaw Calibration 

After the 𝜃, 𝜓, and 𝑧 parameters have been corrected such 

that all sensors are coplanar, we next translate and rotate all 

sensors relative to each other in the shared 2D plane to 

minimize the error between their shared observations. 

1) Procedure 

Figure 9 shows how a series of pedestrian positions (head 

detections) observed in time by two sensors can be used for 

calibration. First, correspondences are made between 

detections by separate sensors based on time of detection – in 

the figure, the numbers 1-5 represent time stamps (Fig. 9, 

left).  The sensors are then rotated and translated to minimize 

the 2D Euclidean distance between those corresponding 

detections (Fig. 9, right). 

To accommodate for small amounts of clock drift, we 

consider human detections from different sensors to be 

simultaneous shared observations if they occur within a given 

time threshold of each other (we used 20ms). 

Note that in this work, we assume only one pedestrian to be 

visible at any time; however, various techniques are available 

to extend this to a multiple-pedestrian scenario. For example, 

individual pedestrians observed by different sensors can be 

associated based on trajectory shape, velocity profile, and 

membership in social groups [22, 28]. 

2) Mathematical formulation 

The basic mathematical problem is to find a rigid 2D 

transformation matrix similar in some ways to the problem of 

“bundle adjustment” in computer vision [29]. However, there 

 
 

Figure 6. Overview of calibration procedure. Dashed borders indicate 

process steps which can be conducted independently per sensor and thus 

parallelized. 

  
Figure 7. Left: Visualization of a plane fit to observed head positions for a 
misaligned sensor. Right: Plane fit after correction of sensor pitch, roll, and 

height (𝜃, 𝜓, 𝑧). All units are in mm. 
 

 
Figure 8. A transformation in pitch and roll is applied to the sensor so that the 
head plane coincides with the level ground-truth plane. The plane is then 

translated by a distance ∆𝑧 so that its height matches the pedestrian’s height. 
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are a few key differences. Whereas bundle adjustment deals 

with 2D projections of 3D points on a camera image, the 

current problem deals with direct 3D measurements of the 

real spatial positions of the detected points. 

More formally, consider a sensor network consisting of S 

sensors, in which human positions are observed at each time 

step 𝑡 ∈  {1. . 𝜏} by zero or more sensors. The 2D pose of 

each sensor of index 𝑖 ∈ {1. . 𝑆} is parameterized by a vector 

𝒔𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝜙𝑖) and represented collectively as the parameter 

vector 𝜷 = {𝒔𝟏, 𝒔𝟐, … , 𝒔𝑺} . The observation of the human 

position at time 𝑡  from sensor 𝑖  is parameterized in 

sensor-relative 2D coordinates by a vector 𝒑𝑡
(𝑖)

= (𝑥𝑡
(𝑖), 𝑦𝑡

(𝑖)), 

and its positions can be transformed into global coordinates 

by a rigid transformation matrix 𝑻𝒊(𝒔𝑖), which for generality 

can be written 𝑻𝒊(𝜷). Finally, let 𝑣𝑖𝑡  denote a binary variable 

equaling 1 if sensor 𝑖  can see the human at time 𝑡  and 0 

otherwise. 

The procedure for finding the optimal sensor positions is 

thus represented by Eq. 1, that is, for each pair of sensors at 

each time step, we minimize the Euclidean distance between 

the 2D projections of their simultaneous observations of the 

pedestrian into real space by adjusting the sensor poses. We 

solve for the optimal parameter vector 𝜷  by least-squares 

minimization, using the Levenberg-Marquardt method.   

𝑚𝑖𝑛
𝜷

∑∑∑𝑣𝑖𝑡𝑣𝑗𝑡 ‖𝑻𝑖(𝜷)𝒑𝑡
(𝑖) − 𝑻𝑗(𝜷)𝒑𝑡

(𝑗)
‖

𝜏

𝑡=1

𝑆

𝑗=1

𝑆

𝑖=1

             (1)

Note that since no absolute position reference is included in 

this calculation, the problem is underconstrained, and an 

infinite number of valid solutions are possible. As we are only 

concerned at this point with relative sensor positions, we can 

choose to set the first sensor as fixed at (0,0,0) and solve for 

the remaining 𝑆 − 1 sensor positions. 

As a final note, if large numbers of shared observations are 

available, random sampling can be used to reduce the size of 

the matrix to be solved. We tend to employ this practice when 

the data contains more than 10,000 shared observations. 

D. Absolute X-Y-Yaw Calibration 

Once the relative poses of the sensors have been 

determined, the final step in the proposed algorithm is to align 

the sensor network with a known coordinate system. Since 

the sensors need to be manually mounted on the ceiling for 

the purpose of tracking, we can expect that approximate 

positions of some or all the sensors are known a priori. 

To obtain the best alignment of the calibrated sensor 

network to the external coordinate frame, we perform another 

least-squares minimization, using the sensor positions only. 

In this calculation we only need to consider the 2D 

positions of the sensors, not their orientations (which are 

fixed relative to the rest of the network). We define a network 

of 𝑆 sensors, where the 2D position of each sensor of index 

𝑖 ∈ {1. . 𝑆} is parameterized by a vector 𝒔𝑖 = (𝑥𝑖 , 𝑦𝑖) in the 

network-relative frame. We then consider a set of vectors 

𝒔̂𝑖 = (𝑥̂𝑖 , 𝑦̂𝑖) representing the a priori estimate of the position 

of sensor 𝑖  in the global coordinate frame. We define a 

parameter vector 𝜷 = (𝑥𝐺 , 𝑦𝐺 , 𝜙𝐺)  to represent the global 

transformation parameters to be applied to the sensor network, 

and let matrix 𝑻𝐺(𝜷) define the rigid transformation between 

the network-relative frame and the global coordinate frame. 

In case position estimates for some sensors are not available, 

we define a binary variable 𝑣𝑖  equaling 1 if the absolute 

sensor position estimate 𝒔̂𝑖 is defined and 0 if it is not. 

We then perform the procedure represented in Eq. 2, 

finding the optimal global transformation which minimizes 

the error between the calibrated sensor positions and the a 

priori estimated sensor positions. Sensors with no a priori 

estimate are not used as constraints, but are translated and 

rotated with the rest of the network. 

𝑚𝑖𝑛
𝜷

∑𝑣𝑖‖𝑻𝐺(𝜷)𝒔𝑖 − 𝒔̂𝑖‖

𝑆

𝑖=1

                                                 (2)

We have also developed a graphical user interface allowing 

manual alignment. The sensor positions are projected on a 

map of the tracking area, and a user can drag and rotate the 

entire sensor network by hand to register it with the absolute 

coordinate frame. In practice, we find manual alignment most 

useful when the sensors are not rigidly fixed and we are trying 

out different configurations, whereas once sensors have been 

installed, the mathematical technique is more convenient. 

V. CALIBRATION USING 2D AND 3D SENSORS 

The techniques presented so far can be used with 3D range 

sensors alone, and as of the time of writing, they have 

successfully been used by us for calibrating sensors in seven 

different experimental environments. 

However, depending on the sensor configuration, it can 

sometimes be quite difficult to obtain shared observations 

between some sensors. This can lead to low calibration 

accuracy, or even make it impossible to calibrate the network. 

To remedy this problem, we propose the use of 2D laser 

range finders in conjunction with the 3D sensor network. The 

greater sensing range of the 2D LRF’s can ensure a much 

larger degree of overlap between sensors. As Fig. 10 shows, a 

single 2D sensor can track a person over a very large area, 

while the tracking area of the 3D sensors is quite limited. 

As Fig. 11 (left) shows, the connectivity of 3D sensor 

 
Figure 9. Example of calibration using shared observations. Left: Two 

uncalibrated sensors simultaneously observe the path of a person at times 
1-5. Right: Sensor positions are adjusted to minimize the error between 

corresponding shared observations. 
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network in terms of shared observations can be sparse. The 

28-sensor network shown in the diagram has four major 

groups of highly-interconnected sensors, but very few 

connections between these groups. Fig. 11 (right) shows how 

connectivity is dramatically increased by including the 2D 

sensors. This technique can even make it possible to calibrate 

sets of 3D sensors sharing no overlap with each other. 

1) Technique 

In order to calibrate 2D and 3D sensors on the same 

coordinate frame, we model the head detections from the 3D 

sensors as being directly above the waist detections from the 

2D sensors. In this way, the human detections from all 

sensors can be projected onto a shared 2D plane. 

The problem thus becomes one of calibrating a set of 3D 

sensors in 6 DOF (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓) together with a set of 2D 

sensors with only 3 DOF (𝑥, 𝑦, 𝜙), since we consider the 2D 

sensors to be level and fixed at a given height. 

The simplest way to perform calibration using the two 

kinds of sensors is to add the 2D sensors to the network in the 

relative x-y-yaw calibration step. This does work, but doing 

so greatly increases the size of the matrix to be optimized, and 

thus slows down the computation. 

To perform the calibration more efficiently, we consider 

that when calibrating 3D sensors alone, only a small fraction 

of the detections from any given sensor constitute shared 

observations with other sensors, and the rest of the data are 

not useful for calibration.  

However, observations of the 2D sensors overlap with 

nearly 100% of the data from the 3D sensors. As a result, the 

small number of shared observations between adjacent 3D 

sensors makes only a minor contribution, and the 3D sensors 

can be calibrated directly to the 2D sensors. 

 Thus, the relative x-y-yaw calibration for the 3D sensors 

can be parallelized, and we organize the process as shown in 

Fig. 12. First, in parallel with the pitch-roll-z calibration of 

the 3D sensors, the set of 2D sensors are calibrated with each 

other. Next, each of the 3D sensors are independently 

adjusted such that their observations align with the 

observations from the calibrated 2D sensors. Finally, the 

entire network is aligned with the global coordinate system. 

VI. EVALUATION 

A. Evaluation Procedure 

We evaluated the performance of our two proposed 

techniques in two ways: first, we measured the accuracy of 

estimated sensor positions against manually-measured 

ground truth, and second, we measured the absolute tracking 

accuracy of pedestrians at known locations. For each of these 

measurements, we evaluated both the proposed calibration 

technique using 3D sensors only, and the second technique 

using both 3D and 2D sensors. This evaluation was conducted 

in the environment described in Sec. III-A.  

1) Sensor position accuracy 

To obtain ground truth of the sensor positions, we used a 

Bosch DLE 150 precision laser range measurement device to 

measure the location of each sensor in an (𝑥, 𝑦, 𝑧) coordinate 

system relative to the walls of the room. We then recorded 2D 

and 3D range data from one pedestrian walking in the room 

for 300 seconds, and we generated sets of estimated sensor 

positions using each of the two proposed techniques. For each 

set of sensor positions, the error between the estimated and 

ground-truth positions of each sensor was computed.  

 
Figure 10. Detections of a pedestrian walking in a grid pattern in our sensing 
room. Gray circles show detections from a 2D LRF, and groups of colored 

circles outlined in black show detections of the same pedestrian from four 3D 

sensors. 
 

 
Figure 11. Illustration of network connectivity. Gray squares indicate the 
existence of shared observations between two sensors. The matrix on the left 

shows 3D sensors only, while the matrix on the right also includes 2D 

sensors which, in this case, each share observations with all of the 3D 
sensors. 

 
Figure 12. Calibration procedure using 2D and 3D sensors together. Dashed 

borders indicate process steps which can be conducted independently per 

sensor and thus parallelized. Yellow highlighting indicates steps that differ 
from the 3D-only calibration procedure. 
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2) Pedestrian Tracking Accuracy 

We then evaluated the accuracy of pedestrian tracking by 

marking 18 reference points at 2m intervals on a 

precisely-measured 10m x 4m grid on the floor and asking 

participants to stand over those points. We repeated each 

measurement four times, with the participant facing in a 

different cardinal direction each time. The mean position over 

two seconds of data was recorded for each reference point. 

In total, five participants were measured four times each, 

facing in different directions each time, yielding 20 

measurements at each of the 18 reference points, for a total of 

360 measurements overall. 

B. Results 

The results of these two evaluations are shown in Table I. 

For both evaluations, we computed the root-mean-squared 

(RMS) error in x, y, and z directions, as well as total RMS 

error in 3D. Additionally, we calculated the 2D error in the 

x-y plane, because we consider this to be a more relevant 

error metric for 2D tracking applications. 

The sensor position results (considering 2D RMS error) 

show a sensor position accuracy of 130 mm with the 3D-only 

technique and 52 mm with the 3D+2D technique.  Tracking 

accuracy shows a slightly higher error, at 159mm with 

3D-only and 104mm with 3D+2D. 

The results for z error were similar across both techniques, 

because the same process of pitch-roll-z calibration was used. 

Along the z-axis, sensor positions were calibrated within 

17mm, and tracking was accurate to within 71mm. 

C. Discussion  

Results showed the tracking error to be larger than the 

sensor position error. This is partly due to the fact that the 

human figure is an irregular shape, with no clear center.  Even 

the top of the head is not well-defined, for example, if the 

head is inclined. Reflectivity errors from hair and clothing 

also contribute to uncertainty in defining the human shape. 

  Similarly, the difficulty of detecting the exact top of the 

head leads to z errors in real-time tracking, whereas during 

sensor calibration the RANSAC plane fit is successfully able 

to reject many such misdetections as outliers, correctly 

determining the sensor z positions to high precision. 

 Finally, the data demonstrate that greater accuracy is 

obtained via the addition of 2D sensors during the calibration 

process. The 3D+2D technique provided a 60% improvement 

in sensor position accuracy and a 35% improvement in 

tracking accuracy over the 3D-only technique. 

VII. FUTURE WORK AND CONCLUSIONS 

A. Future Work 

1) Multiple Anonymous Pedestrians 

Ideally, it would be desirable to perform calibration based 

on multiple, anonymous pedestrians, such as customers in a 

shopping mall. If we fix the z position of the sensors based on 

measured ceiling height rather than using the pedestrian’s 

height for z calibration (a reasonable choice, given that the 

sensors are typically mounted on a ceiling of fixed and known 

height), then calibration can be performed using anonymous 

pedestrians. Pitch and roll can still be calibrated based on the 

head plane, even if z is unknown.  

Furthermore, in a previous study we have presented 

techniques for using multiple pedestrians to calibrate 2D 

sensor systems, including techniques for identifying shared 

observations among large numbers of pedestrians in public 

spaces [22]. In future work, we hope to integrate such 

methods with the techniques proposed here, enabling 3D 

sensor networks to be calibrated using data passively 

collected from pedestrians naturally walking through the 

space being monitored. 

2) Minimum Required Data 

One question that remains to be resolved is how to 

determine the minimum amount of data required for 

calibration. Currently, we have a reference pedestrian walk in 

a grid pattern through the room to ensure sufficient data, but it 

would be helpful to develop an automatic way of identifying 

when the system is ready for calibration, and specifying 

which areas need more data. For plane-fitting, it is necessary 

to have a sufficient 2-dimensional spread of points, as a single 

straight-line trajectory does not uniquely define a plane, and 

for inter-sensor calibration, it is important to have shared 

observations with adjacent sensors, meaning the pedestrian 

needs to walk through all overlapping sensing areas.  

Currently, the decision of when to calibrate is manual, and 

operators of the system are given an option to collect more 

data if there is a failure in plane extraction or insufficient 

connectivity for network calibration. 

3) Zero-knowledge Calibration 

As mentioned earlier, the technique we have presented 

requires rough initial estimates of pitch and roll for each 

sensor, in order to detect the tops of people’s heads. While 

these estimates can usually be obtained easily in practice, it 

would be more elegant to create a calibration algorithm that 

could calibrate the entire network starting from an entirely 

zero-knowledge state. In future work we hope to develop 

techniques to make this possible. 

4) Hybrid tracking networks 

In this study, we mainly considered the 2D sensors to be a 

temporary aid for the calibration of the 3D sensor network, 

but it is also reasonable to consider making the 2D sensors a 

permanent part of the system. The strengths and weaknesses 

TABLE I. EVALUATION RESULTS 

 3D Only 3D + 2D 

Sensor position accuracy   

𝒙 𝑬𝒓𝒓𝒐𝒓 109 mm 35 mm 

𝒚 𝑬𝒓𝒓𝒐𝒓 71 mm 39 mm 

𝒛 𝑬𝒓𝒓𝒐𝒓 16 mm 17 mm 

Total Error (3D) 131 mm 55 mm 

Total Error (2D Projection) 130 mm 52 mm 

Pedestrian tracking accuracy   

𝒙 𝑬𝒓𝒓𝒐𝒓 137 mm 80 mm 

𝒚 𝑬𝒓𝒓𝒐𝒓 80 mm 66 mm 

𝒛 𝑬𝒓𝒓𝒐𝒓 71 mm 71 mm 

Total Error (3D) 174 mm 126 mm 

Total Error (2D Projection) 159 mm 104 mm 
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of each sensor type could complement each other, resulting in 

more robust tracking overall. Furthermore, the additional 

information gained from using two kinds of sensors could 

help in tasks such as recognizing gestures or activities. We 

consider this to be an exciting area for future work. 

B. Conclusions 

We have developed a set of techniques enabling precise 

6-DOF extrinsic calibration of large numbers of 

ceiling-mounted 3D range sensors based solely on 

observations of moving pedestrians. This is an important 

achievement for enabling the practical deployment of sensor 

networks in active public spaces, where traditional 

point-cloud matching approaches cannot be used, and where 

it is undesirable to disturb the social environment for the 

purpose of sensor calibration. 

In this work, we have introduced techniques for calibrating 

pitch and roll of each sensor based on mapping pedestrian 

head detections to a level plane, and for determining relative 

sensor positions based on shared observations of pedestrians. 

Furthermore, we have shown the benefit of using 2D sensors 

to assist in the calibration of 3D sensors, resulting in 

measurable improvements in both sensor position estimation 

and pedestrian tracking performance. Precise calibration can 

lead to more accurate pedestrian tracking, an important 

consideration for robots operating in proximity to humans. 
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