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Teaching a Robot Where to Park: A Scalable Crowdsourcing Approach
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Abstract— For social robots to successfully integrate into
daily life in home environments, they will need reliable models
of the way people perceive and use space in the home. This
paper explores the problem of obtaining annotated training
data at scale for subjective judgments about spatial locations.
Focusing on the use case of identifying good and bad parking
spots for a social robot operating in a home environment,
two experiments are presented. The first study shows that the
presentation of context-rich 3D images to human annotators
yields notably different outcomes from those obtained when
using 2D robot navigation maps. We attribute the source of
these differences to a set of features visible only in the 3D
views and introduce a technique for labeling these features on
the 2D maps. The second study reveals that using labeled 2D
maps produces annotation data very similar to that obtained
using 3D images. Since a labeled 2D map can be generated at a
fraction of the cost of a full set of 3D views, we recommend this
method as a scalable approach to collecting subjective spatial
data annotations in everyday environments.

I. INTRODUCTION

Social robots have become increasingly popular in venues
that prompt short-term interactions with humans like hotels
and grocery stores, but they have yet to to convince users
of their adaptability and usefulness in venues that require
long-term interactions like people’s homes [1]. Research in
innovation adaptation suggests that these robots will need to
display intelligent and social behavior to capture the interest
of mass markets and potential home users [2].

Taking on the challenge, Amazon has recently released
Astro, a household robot for home monitoring (see Fig. 1)
[3]. One of Astro’s intelligent motion features allows it to
find its way around a home and hang out near users at
the ready while not in use. Astro needs to choose hangout
parking locations that are out of the way to avoid obstructing
walking paths or items in the home the users might need to
access. These are long-term parking spots where Astro may
be parked for several hours. To achieve this goal effectively,
Astro must understand and model the way people perceive
and use space in the home.
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Fig. 1. Astro is Amazon’s new household social robot. In this paper, we
explore human perceptions of social appropriateness of Astro parking in
different locations in the home using two visual representations. Here, we
show examples of the dataset stimuli for the 2D and 3D data shown on the
bottom left and right respectively.

Human spatial preferences often rely on contextual, cul-
tural, and subjective judgments and therefore would be
difficult to capture using simple modeling techniques. In
this work, we propose to collect human judgments of spatial
preference across multiple home environments. This data can
be used as ground truth to train and validate more complex
models of home spatial use. Such models can then be used to
develop and validate behaviors for robots like Astro that rely
on such knowledge. To support Astro’s hangout behavior,
we want to model where humans think it should park. We
focus on the specific problem of the social appropriateness
of parking in different locations in the home.

Asking home owners to directly annotate all good and bad
parking spots in their homes is labor-intensive. Professional
analysis teams could visit test homes to collect this data,
but this method would be difficult to scale and generalize to
the diversity of different home environments. To address this
limitation, we propose crowdsourcing as a method to collect
these human judgments quickly and efficiently. However,
quality crowdsourced responses rely on having an accurate
representation of the situated environment [4].

In this paper, we consider two possible representations
of Astro’s environment to generate data for crowdsourcing.
The first representation is a two-dimensional (2D) top-down
view of a home’s layout generated from Astro’s navigational
map. The 2D data requires minimal effort to generate but
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does not capture all the context necessary for reliable human
judgments. The second representation is a three-dimensional
(3D) RGB point-cloud image of the home generated from a
separate lidar scan. The 3D data provides a richer interpreta-
tion of the home but requires substantial effort and expensive
equipment to generate.

We will first describe a preliminary user study conducted
to determine the potential for using these two representations
to collect human judgments of the social appropriateness of
Astro’s parking locations. We sought to understand whether
2D maps were sufficient for collecting annotations of robot
parking spots, or whether the richer information available
in 3D images would be necessary. Our preliminary results
informed the design of a second user study that included an
intermediate representation that provides additional context
to the 2D maps and reduces the effort and computational
power required to generate the dataset stimuli for annotators.
This approach is shown to facilitate a more efficient and
scalable data collection process for collecting and validat-
ing robot location features derived from subjective spatial
understanding of the home.

II. RELATED WORK

A. Expectations for Home Robots

Social robots have been considered for use in various
tasks in the home environment ranging from care [5], [6]
to assistance [7], [8] to companionship [9], [10], and even
entertainment [11]. Graaf found that increasing the robot’s
sociability is one way to foster the acceptance of social
robots in home environments. Recommendations to increase
sociability include enhanced conversational abilities, user de-
tection and recognition, emotional behavior and perception,
and intelligent navigational capabilities [12]. While prior
work has considered robot navigation and path planning
for social robots in the home when the target parking
location is known or provided by users [13], [14], very little
work has considered how the target location can be chosen
autonomously. In this work, we propose to teach social robots
which parking locations are appropriate by crowdsourcing
human judgments across multiple home floorplans.

B. Social Positioning & Spatial Understanding

The social positioning of mobile robots has largely been
considered in the context of interactions with one or more
humans in a given environment [15], [16]. Approaches to
determine the appropriate social positioning include direct
instruction from users [17], inference from non-verbal so-
cial cues [16], and prior knowledge related to the robot’s
objectives [18]. Social positioning has also been explored
in a diverse set of environments, including shopping malls
[19], nursing homes [18], and emergency rooms [20] to name
a few. Many of these works collectively agree that social
robots should remain out of the way for humans that are
focused on completing tasks in the same collocated space.
Thus raises the question, how does a robot learn to stay ”out
of the way”? This complex spatial characteristic requires an
underlying understanding of how humans use space in the

home. However, little work has attempted to model spatial
understanding of the home to help determine where a robot
should position itself. Our approach will demonstrate that
appropriate social robot positions can be measured efficiently
even for complex environments like people’s homes.

III. 2D VS. 3D PRELIMINARY STUDY

An accurate spatial representation of a potential parking
position in a given home environment is needed to crowd-
source preference data from human annotators. We began our
exploration by considering a 2D and a 3D representation that
were readily available. Once deployed, Astro uses advanced
navigational technology to find its way around the home
environment and generates 2D navigational maps. 3D point-
cloud representations of the home can also be collected by
setting up standalone lidar sensors. The coordinate systems
of these 2D and 3D home representations can be aligned
such that a potential robot position can be examined in both
worlds. We used a selection of these maps and scans to
produce a set of stimuli for a preliminary crowdsourcing
experiment where we sought to gather human judgements of
social appropriateness of robot parking locations.

A. 2D Home Representations (2D-U)

The 2D maps illustrate the navigable space in a given
home environment and represent the world as Astro sees
it. An example map is shown on the bottom left in Fig. 1.
Astro builds the navigational 2D map using SLAM for every
environment it operates in [21]. As such, these maps are the
most easily accessible and prevalent source of home spatial
configurations we have. They most closely resemble the
architectural floor plans that people would use to examine the
layout of homes or apartments. However, our 2D navigational
maps only display walls and ”clutter”. Household features
like doors, sofas and room names are not labeled explicitly.

For our 2D image dataset stimuli, we uniformly sampled
potential robot parking spots across the navigable area in
each map generated from exploration of different home
environments. A potential parking spot for the robot is shown
as a bright green square (0.4m per side, about the size of the
physical Astro robot) plotted on the map (see Fig. 1).

B. Immersive 3D Home Representations

The 3D RGB lidar scans illustrate the home environment
as humans would see it. An example view is shown on the
bottom right in Fig. 1. The lidar scans were collected using
standalone Leica BLK360 scanners. From the lidar scans,
we produced detailed full-color point clouds, showing rich
contextual information about the home to help inform anno-
tator ratings. Collection of these 3D scans required additional
effort, expensive equipment, and specialized software.

To generate the 3D image dataset stimuli, we uniformly
sampled potential robot parking spots across the navigable
floor space. The potential parking spot is indicated on each
captured image with a bright green square plotted on the
floor (about the relative size of the physical Astro robot,
about 0.4m per side). We needed to check and potentially



adjust the camera angle per potential parking location to best
capture the pose and its relevant context. For example, Fig.
2 shows two potential parking locations that are near each
other but required the manual adjustment of the camera angle
to visibly see each location. This camera-adjustment process
required special software to manipulate the 3D point-clouds.

C. Robot Pose Annotation Collection

The 2D and 3D image dataset stimuli of the home
environments were used to collect human judgements of
the appropriateness of potential robot parking locations. We
designed an annotation interface to allow raters to easily
access the task and allow us to quickly process the results.

1) Annotation Interface: Amazon SageMaker Ground
Truth was used to create the user interface. The interface pro-
vided instructions for annotators in the left panel, displayed
the experimental stimuli in the middle panel, and showed the
robot parking location rating scale in the right panel (Fig. 3).
Annotators had the ability to use shortcuts to provide ratings,
zoom and pan the image stimuli, and review the instructions
or rating scale guidance at any time.

2) Annotator Instructions: Annotators were first told that
the purpose of the annotation task was to help model the
quality of locations for a robot to park in various home
environments. They were then instructed to watch a short
two-minute video introducing Amazon Astro [3]. Instructions
were then provided that described the objective of the robot,
illustrated examples of decisively good and bad robot parking
locations, and provided guidance for interpreting the image
stimuli they would be rating (i.e., the green parking spot,
the relative size of the grid, etc.) and the scale to use for
evaluating the potential parking location. Finally, they were
given tips on using the interface efficiently and instructed to
spend no more than one hour at a time providing annotations.

3) Robot Pose Rating Scale: Annotators were instructed
to rate each parking spot using the following scale:

1) Very Poor - Astro absolutely must not park here.
2) Poor - Astro should try to avoid this parking spot. (e.g.

users could walk around Astro but it is inconvenient)
3) Cannot Determine - Not clearly bad, but also not

clearly good.

Fig. 2. Two nearby parking positions that cannot be seen from the same
perspective, requiring manual adjustment of the camera angle to be seen.
This step, requiring specialized software and manual effort, is conducted per
potential parking position and may need to be repeated hundreds of times
to generate the dataset stimuli needed for crowdsourcing.

Fig. 3. The developed interface for annotators to provide subjective
judgements of appropriateness for robot parking. The interface was used
to annotate the image stimuli during each condition for each experiment.

4) Good - Astro can park here but it is not perfect.
5) Excellent - It is ideal for Astro to park here.

D. Participants

In accordance with the Amazon company policy, data
annotation was performed by a paid internal annotation team.
Rather than using a public crowdsourcing platform such as
Mechanical Turk, a contracted annotation team was used to
ensure compliance with relevant data privacy protocols. Four
annotators were selected to provide social appropriateness
ratings for each potential parking location across all floor
plans. Participants had no direct experience with the Astro
home robot.

E. Experimental Stimuli

In our preliminary user study, we utilized a total of 4
home floor plans obtained from a dataset of non-customer
home floor plans which were internally collected for research
purposes. We sampled for potential parking locations across
the navigable area of each floor plan at a spacing of 0.5
meters, resulting in 562 locations. The datasets of image
stimuli were then generated where each of the 562 total
potential parking locations were shown individually on their
respective floor plans. In other words, 2D map views of
potential parking locations were directly compared to 3D
image views of those same parking locations. All annotators
completed the 2D annotation task before the 3D task on
separate days to avoid carryover effects.

F. Results

We first examined the data to determine the level of
variance between annotator ratings. The average standard
deviation across all the sample poses was 0.68 for the 2D
image ratings and 0.60 for the 3D image ratings. The mean
absolute deviation between ratings of corresponding poses
for the two conditions was 0.93. Raters agreed perfectly on
102/562 (18.1%) of poses. Annotators were in slightly better
agreement in the 3D condition than the 2D.

Next, we explored what features of the home contributed
to the most variance between annotator ratings. We de-
fine an annotator social appropriateness rating as rd

i, j ∈



{0,0.25,0.5,0.75,1}, where d ∈ {2,3} is the dimension
viewed to obtain the rating, i ∈ [1,2, ...,N] indicates the
sample parking position index (N = 562) of the image stim-
uli, and j ∈ [1,2, ...,M] indicates the human annotator index
(M = 4). We then define an aggregate social appropriateness
rating for each sample i per dimension d as

Sd,i =
1
M

M

∑
j=1

rd
i, j (1)

We then inspected the aggregate differences between the
annotator’s ratings of the 2D and 3D presented parking
positions. We calculate the absolute distance between each
aggregate rating Ai = |S3,i − S2,i| for each sample parking
position i. A difference map for one of the four floor plans
is illustrated in Fig. 4. The values shown are the absolute
distance scores Ai and the color of the parking positions
indicate which condition had lower social appropriateness
ratings and were thus more strict. Red locations indicate the
3D ratings were more strict and blue locations indicate the
3D ratings were more tolerant toward Astro parking there.
Most frequently, ratings were more strict in the 3D condition.
In a few cases, the trends went in the other direction. In all
cases, the cause of the discrepancy was easily determined by
inspection. For example, some poses blocked doors which
were visible in the 3D view but not on the 2D map. Others
blocked access to appliances or high-traffic areas in the
kitchen, something also not visible on the 2D map.

We performed a qualitative examination on clusters of po-
tential parking locations, focusing on areas where the average
scores differed by at least two points between conditions (i.e.,
where annotators contradicted their rating in the alternate
condition). Most frequently, these clusters coincided with
one of the following features: kitchens, doors, beds, tables,
and sofas. All of these features are explicitly visible in the
3D images, but not in the 2D maps. Of 562 total potential
parking positions, 91 (16.2%) had a rating difference of at
least 2.0 between the 2D and 3D image rating. Of these, only
two received more lenient ratings in the 3D condition. The
frequency of features that contributed to the discrepancy in
annotator ratings is shown in Fig. 5.

G. Discussion

Our preliminary results indicate that annotations differed
between the 2D maps and 3D images most where kitchens,
doors, beds, and other furniture could not be effectively
interpreted in the 2D maps. The 3D presented parking
positions resulted in more consistent annotator ratings, but
the process to generate the 3D parking positions is both
tedious and time-intensive where each potential parking
position must be individually captured per map, presenting
a huge scalability issue. A more scalable approach that
provides the necessary features and contexts of the home
environment is needed to measure social appropriateness of
parking positions effectively.

The conclusion from this preliminary user study was that
much of the discrepancy between the 2D and 3D conditions

Fig. 4. A visualization showing the difference between aggregate annotator
ratings for individual positions in the 2D and 3D conditions. Intensity of
color indicates magnitude of differences between conditions. Red areas were
rated more strictly in 3D and blue areas more leniently. Numbers indicate
absolute difference for positions with differences of at least 0.5 points.

Fig. 5. Observed frequency of features that contributed to discrepancies
between annotator’s social appropriateness ratings of 2D and 3D-presented
potential parking locations. Kitchens, doors, beds, tables, and sofas were
the most common sources of discrepancy.

was explained by a small number of contextual features
which are visible in the 3D images. This finding suggested
that if these features were labeled in the 2D map, we might
be able to achieve similar performance to the 3D condition.
The following section describes a second user-study we
conducted to explore this by comparing annotator ratings of
2D, labeled 2D, and 3D presented parking positions.

IV. LABELED 2D MAPS USER STUDY

Results from the preliminary user study suggested that
the original 2D maps did not model enough of the home
environment’s context for annotators to provide useful and
consistent ratings. The high-fidelity 3D image stimuli re-
sulted in improved annotator performance, but the process
to generate the samples was not efficient. Based on these
findings, we hypothesized that adding labels of important
features to the 2D map might achieve the annotation accuracy



Fig. 6. An example 2D-L map. Contextual information is explicitly identi-
fied to help annotators provide an informed rating of social appropriateness
for a given potential robot parking position. Light brown areas represent
clutter or furniture, red arcs or line segments indicate doors, colored boxes
indicate kitchen, other rooms, or beds, and the remainder of features are
labeled with text. 1-meter grid lines provide scale reference.

of the 3D condition, while maintaining the scalability and
lower data generation cost of the 2D condition. We conducted
a user study to test this hypothesis comparing unlabeled
2D maps (2D-U), labeled 2D maps (2D-L) and 3D images
(3D) of multiple home environments. The 2D-U maps were
described in Section III-A, the 3D images in Section III-B,
and the 2D-L maps are described next.

A. Labeled 2D Maps (2D-L)

We generated 2D-L from the maps introduced in Section
III-A. An additional data-preparation step was applied where
we explicitly labeled contextual features on the maps used to
generate the image stimuli. All of the features discovered in
the previous study were added: kitchens, doors, beds, sofas,
and tables. Additional features were added to some maps, in-
cluding toilets, staircases, chairs, desks, and fireplaces. Many
of these features were not discernible in the initial 2D maps
(2D-U) and our goal was to provide an intuitive description
of major features in the home. We also determined that it
was necessary to specify the swing arc of each door, as this
provided important information regarding potential parking
spaces in the vicinity of the door.

An example 2D-L map is shown in Fig. 6. These maps
were created manually, by overlaying text and shapes on the
robot’s navigation maps. Information for the map annotation
came from manual inspection of the 3D point clouds, but it
would also be possible to gather this information from in-
person inspection, architectural floor plans, or photos of the
environment, depending on the method of collecting the map
data. This step is only needed once per map, thus making the
process more scalable and efficient than the 3D approach.

B. Experimental Stimuli

For experimentation, we utilized a new set of 6 non-
customer floor plans and uniformly sampled potential park-
ing positions at a spacing of 0.5 meters across navigable
space. In this data set, some floor plans were much larger
than others, so to prevent the larger floor plans from domi-
nating the dataset, the number of poses was sub-sampled to a

maximum of 200 per floor plan. We then selected 1,000 total
potential parking locations for inclusion in the experiment.
We then generated the 3 datasets of image stimuli for 2D-U,
2D-L, and 3D representational approaches. We utilized the
same annotation collection technique from our preliminary
user study as described in Section III-C.

In the previous study it was clear that the 3D condition
provided more information than the 2D-U condition, making
the ordering of conditions straightforward. In this study, the
2D-U condition was again presented first, but it was not
clear whether the 2D-L or 3D condition would provide a
greater amount of semantic information. While the 3D view
showed richer information, it was also noisy and sometimes
difficult to interpret. The 2D-L map had clear labels but was
missing fine details. In consideration of this ambiguity, the
2D-L and 3D conditions were counterbalanced. For half of
the floorplans the 2D-L condition was presented first, and
for the remainder, the 3D condition was presented first.

C. Participants

We employed the same 4 professional annotators as in
the previous experiment. Each annotator provided social ap-
propriateness ratings for each of the 1,000 potential parking
locations for each of the 2D-U, 2D-L, and 3D annotation
tasks, resulting in a total of 12,000 annotations.

D. Results

1) Inter-Rater Reliability: We again examined the data to
determine the level of variance between annotator ratings.
The average standard deviation across all the sample poses
was 0.90, 0.89, and 0.98 for the 2D-U, 2D-L and 3D ratings
respectively. Next, we calculated the average inter-rater reli-
ability between the 4 annotators using Cohen’s Kappa with
quadratic weighting (κ). This increases the “badness” of a
disagreement quadratically with the size of the disagreement,
and is useful for ordinal scales such as the one we are
using. The κ score for the 2D-U, 2D-L, and 3D ratings was
0.42, 0.45 and 0.34 respectively, signifying fair agreement
for the 2D-U and 2D-L conditions, and slight agreement for
the 3D condition. Average agreement was strongest on the
2D-L data, and weakest on the 3D data. The labeling of
the 2D-U maps gives a consistent set of semantics to the
map, which might result in less disagreement. The average
agreement for the 2D-U data was Fair, suggesting that the
annotators are consistent in their treatment of open space and
features interpreted as walls. Further inspection of individual
annotator ratings show that annotator pairs did not seem
to consistently agree or disagree across the conditions. We
attribute the observed variance to subjective differences in
perception and utilization of space in the home. These results
support that multiple judgements are needed to capture the
range of spatial preference amongst potential human users.

2) Inter-Condition Variation: Next, we inspected the ag-
gregate differences between the annotator’s ratings across the
three conditions. We again calculated the absolute difference
between conditions for the aggregate ratings for each sample
parking position (see Section III-F). Fig. 7 visualizes the



Fig. 7. A visualization of annotators’ social appropriateness ratings for the 2D-U (Left map), 2D-L (Center map) and 3D (Right map) presented parking
positions. Here, we can see all the sampled parking positions for the given floor plan to determine the general areas and spots that are deemed acceptable
for Astro. Green potential parking positions had higher annotator ratings than red parking positions.

aggregate ratings for a sample floor plan under each of the
three conditions. Fig. 8 shows difference maps between each
pair of conditions. By inspection it is clear that both the 3D
and 2D-L conditions resulted in stricter annotations overall,
compared with the 2D-U baseline, particularly in areas like
the kitchen and near doors. This finding is consistent with
trends observed in the previous study. Fig. 8 (right) shows
the mean differences between ratings, indicating that the 2D-
L condition produced scores much closer to the 3D condition
than 2D-U did.

In Table I shows relevant statistics to provide insight into
the annotator behavior between conditions. We report (1) the
RMS for the two conditions; (2) the mean difference between
the two conditions; (3) the Spearman’s r correlation statistic
between the ratings (ρ); (4) the percentage of locations that
did not change rating between the evaluations (const); and
(6) the percentage of locations that did not change rating
by more than one point, in either direction (const1). The
average RMS difference in scores is smallest between the
3D and the 2D-L maps (1.33), and largest between the 2D-
U and 3D maps. The difference between the 2D-U and the
2D-L maps is similarly large (1.62), suggesting that both
the 2D-L and the 3D maps are conveying information that
is being interpreted more consistently than the 2D-U map.
Despite the non-normality of the data, a Student’s t-test is
appropriate given the large number of annotated hangout
poses. We found no significant difference between the means
of the ratings when considering all of the annotations (at
0.05 level). However, the actual mean values are quite close
to each other and could easily have been dominated by
the density of poses in open spaces. As such, we interpret
the higher correlation between scores in the 2D-L and
3D conditions, coupled with a low (0.11) mean change
in scores, to suggest that the data in the 2D-L dataset is
being interpreted similarly to that in the 3D. The number
of points that remained constant across conditions is highest
for the 2D-L and 3D conditions, further suggesting that they
are being interpreted most consistently. Overall observations
across all 6 maps indicate that annotator ratings were most
similar for the 2D-L and 3D presented parking positions. The
ratings are not normally distributed (as verified by a Shapiro-
Wilks test, with all p < 0.001), so testing for differences
between the conditions with an ANOVA is not appropriate.

However, a Kruskal-Wallace test revealed that there was a
significant difference in medians across both conditions and
annotators for most of the floorplans (all except one for
condition, and two for annotator), at the 0.05 significance
level. This suggests that the condition (2D-U, 2D-L, 3D)
causes a different annotation and also that what constitutes
a good place for the robot to wait is a very subjective thing.

Condition RMS mean ρ const const 1
2D-U - 3D 1.72 0.68 0.27 29% 63%
2D-U - 2D-L 1.62 0.57 0.32 32% 67%
2D-L - 3D 1.33 0.11 0.42 51% 75%

TABLE I
HERE, WE COMPARE THE INTER-CONDITION VARIATION BETWEEN

ANNOTATION RATINGS OF SOCIAL APPROPRIATENESS.

3) Rating Discrepancy Analysis: Next, we again exam-
ined the potential parking positions with a rating difference
of at least 2.0 between the 3D and 2D-L conditions. In
total, there were 31 such poses across the 6 floor plans,
constituting only 3.1% of the data set. Table II shows our
best assessment of the relative frequency of detected issues.
The most prevalent issues were doors behind curtains and
the perception of open space. Glass doors behind curtains
were not easily recognized as doors in the 3D view, and in
a few cases, doors were assumed to be present which were
not really there. This suggests a benefit to the 2D-L map,
where labels of door positions can be carefully checked and
explicitly indicated. In some cases, it seems that the height
of furniture influenced the perception of openness of space
around it. In other cases, this difference in perception may
have been due to inaccuracy of the robot’s navigational map.
This would suggest a benefit to the 3D visualization in terms
of conveying a more accurate sense of space and scale. These
examples suggest there is an overall advantage to the 2D-
L approach over 3D, although the results are mixed. These
observations may be useful for improving the method further,
but it should be emphasized that the issues examined here
are infrequent and only reflect 3.1% of the data.

V. DISCUSSION

Insights from our preliminary experiment led us to hypoth-
esize that potential parking positions shown on 2D-L maps



Fig. 8. Left: Difference maps between average ratings in the experimental conditions. Red indicates that annotations in the former condition were stricter
than in the latter, and blue indicates that they were more lenient. Darker squares with numbers in them represent differences ≥ 2.0 rating points. Right:
Mean annotation score differences between conditions. Mean difference between 2D-L and 3D scores is much lower than either condition vs. 2D-U.

Issue Count Advantage
Doors behind curtains 7 2D-L
Seems more open in 2D 7 3D
Seems more open in 3D 2 3D
Map noise / boundary unclear in 2D 5 2D-L
Pixel noise / boundary unclear in 3D 4 2D-L
3D perspective misleading 3 2D-L
Chair/Sofa orientation unclear in 2D-U 2 3D / Correctable
Label missing 1 3D
Total 31

TABLE II
LIKELY CAUSES OF NOTABLE DISCREPANCY BETWEEN THE 3D AND

2D-L ANNOTATOR RATINGS. THIS TABLE NOTES THE ISSUE, ITS

FREQUENCY, AND WHICH CONDITION HAS THE ADVANTAGE IN

CONVEYING THAT FEATURE TO ANNOTATORS.

would provide comparable performance to custom-generated
3D images while incurring only a fraction of the data
preparation effort. The 2D-L data preparation is ”per-map”
whereas the 3D is ”per-pose”, enhancing scalability. Another
benefit of the 2D-L map is that it does not require any
specialized software to prepare. The 3D approach required
custom software to rotate and render the point clouds and
robot parking position indicators. Thus, although the 2D-L
approach requires the manual annotation of each map, it is
still more efficient and easier to scale than the 3D approach.

It is likely that the 3D view provides additional value
beyond identification of clutter. For example, it may help
people better judge scale in an intuitive way, e.g. judging
the width of a hallway, although we did not focus on this
point in the current study.

Overall, our results support our hypothesis that the 2D-L
maps provided additional context about the potential robot
parking locations in the home and thus annotator ratings were
more similar to those that were produced from viewing actual
3D depictions of the home environment.

A. Future Work

This work sets the foundation for a methodology for
collecting subjective preferential data about spatial locations
at scale, which is necessary for building a product, and which
could be applied not only to homes but also to businesses
and public or commercial spaces. In this paper we focused on

the problem of judging whether a parking location is socially
acceptable, but other subjective judgments could also be col-
lected (e.g., whether a stopping location is visible, whether
it seems accessible, whether it would be annoying/obtrusive,
or even whether it would be aesthetically pleasing). Going
beyond potential parking locations, the same kinds of map
representations could be used for annotating activity areas,
traffic paths, room boundaries and labels, or other informa-
tion relevant to providing robots with a functional model of
human behavior or human preferences.

We used navigational maps obtained by an Astro robot and
a Lidar scanner to generate our data, but alternative methods
could be leveraged to achieve the same result. For example,
some robots may be able to recognize more features in the
environment, which would make the 2D map labeling easier.
Some robots can generate their own 3D map, in which case
an off-board scanning device is unnecessary. In such cases,
there is no longer an increased cost of data collection or time
to register the maps. However, the challenges of choosing
appropriate camera angles for each potential parking position
to be annotated, and of fitting features into a single camera
field of view, remain. Therefore, our findings will still apply
for robots capable of 3D mapping.

A more efficient approach to collecting preferential data
about spatial locations could be to have annotators color in
regions of parking acceptability. The approach of coloring
in regions was originally not considered because it is not
feasible with the 3D representations, but based on our finding
that a 2D-L map can provide similar results, we could
consider a map-coloring approach. It is unclear whether such
an approach would sacrifice accuracy, but it seems likely to
save a great deal of time, which is another possible advantage
of the 2D-L approach.

B. A Note on HRI Research in Industry
The work reported in this paper was done in the context

of a consumer robot product (Astro) at a large company
(Amazon), rather than at an academic lab. This introduced
a number of constraints that shaped the work. The first
constraint, common to all industrial settings, is that the goal
is to improve the product, not to do basic science. This
has the effect of framing and constraining the problems that
industrial HRI researchers work on.

Additional constraints are imposed by the need to maintain
company intellectual property and trade secrets. This limits



what we can discuss in terms of implications of the findings
for downstream algorithms which rely on this data, and it
also limits what can be discussed in terms of future work,
as potential future product features are a trade secret.

In line with company policies for user data privacy protec-
tion, the annotations for the work were done by an internal
annotation team rather than actual users of the robot. This
almost certainly affected the annotations that they made,
since they did not have the lived experience of being with the
robot in their own homes. In an industrial setting, a typical
in-home study is hard to execute and publish because of user
data privacy controls; we cannot share home maps between
users to compare how different people annotate them.

An industrial setting also offers potential benefits for HRI
research. Consumer devices are deployed at a scale, often
measured in the millions of units, that is impossible in an
academic study. If we can design studies that take advantage
of this scale, we can do in-the-wild experiments at a scale
previously unimaginable. However, these studies will have
to be carefully designed to respect user data and privacy, to
be transparent to the user, and point towards improving the
customer experience.

VI. CONCLUSION

A social robot has the potential to assist with many tasks
in the home, but it will need to understand and model
human spatial preference to effectively position itself in
such a complex environment. We propose that crowdsourc-
ing human judgements of spatial preference is an effective
technique that can be used to support the development and
validation of robot behaviors that rely on such knowledge.
Effective crowdsourcing relies on an accurate depiction of
the target environment. While 2D navigational maps of the
home are easy for us to access and generate, they lack
important contextual information needed for annotators to
provide useful ratings. 3D data obtained from RGB point-
clouds provide a rich and contextual view of the home
environment, but the current process to generate such data is
both time-consuming and difficult to scale. Labeled 2D maps
proved to be a contextually informative medium between the
original two approaches. In conclusion, we recommend the
labeled 2D map approach as a scalable data presentation
method for annotation tasks which require use of human
intuition to reason over the social use of space. The findings
of this study will enable us to greatly increase the size
of our data corpus and improve our annotation process
for developing and validating robot features which require
spatial understanding in the home.
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ploring factors influencing the acceptance of social robots among early
adopters and mass market representatives,” Robotics and Autonomous
Systems, vol. 151, p. 104033, 2022.

[3] “Amazon Astro, household robot for home monitoring,” https:
//www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB,
2021, [Online; accessed 15-February-2023].

[4] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad,
E. Bertino, and S. Dustdar, “Quality control in crowdsourcing systems:
Issues and directions,” IEEE Internet Computing, vol. 17, no. 2, pp.
76–81, 2013.

[5] C. A. Cifuentes, M. J. Pinto, N. Céspedes, and M. Múnera, “Social
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