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Modeling Interaction Structure for Robot Imitation
Learning of Human Social Behavior

Malcolm Doering , Dylan F. Glas , Member, IEEE, and Hiroshi Ishiguro, Member, IEEE

Abstract—This study presents a learning-by-imitation technique
that learns social robot interaction behaviors from natural human–
human interaction data and requires minimum input from a de-
signer. To solve the problem of responding to ambiguous human
actions, a novel topic clustering algorithm based on action co-
occurrence frequencies is introduced. The system learns human-
readable rules that dictate which action the robot should take,
based on the most recent human action and the current estimated
topic of conversation. The technique is demonstrated in a scenario
where the robot learns to play the role of a travel agent. The pro-
posed technique outperformed several baseline techniques in qual-
itative and quantitative evaluations. It responded more accurately
to ambiguous questions and participants found it was easier to un-
derstand, provided more information, and required less effort to
interact with.

Index Terms—Human–robot interaction, imitation learning, in-
teraction structure, spoken dialog system, unsupervised learning.

I. INTRODUCTION

PRESENTLY, social robots show a potential in the roles of
elder care, personal companions, hotel concierges, and in

day-to-day interaction [1]–[4], and with the cost-effectiveness
of automation, this trend is likely to continue. However, one
of the difficulties of introducing robots to new domains is the
creation of social interaction logic, which dictates how the robot
behaves and interacts with people. It is tedious for an interaction
designer to create all the behaviors for a robot by hand, and it is
an incredibly challenging task to anticipate all the varieties of
ways that humans may behave in a social interaction.

All these problems can be addressed through an imitation
learning based approach for the development of robot interaction
logic, as demonstrated by Liu et al. [5]–[7]. Natural human–
human interaction data can be collected with sensor networks in
target environments, like stores and offices. Machine-learning
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Fig. 1. (Left) Human–human data collection in travel agent domain. (Right)
After training the system the robot replaces the human travel agent.

algorithms can then be applied to this data to train a robot to take
the place of one of the humans by imitating their behavior. For
example, by passively collecting data from natural interactions
in a travel agency, a robot could learn how to become a travel
agent (Fig. 1).

With an imitation-learning approach, it is possible for a robot
to learn the correct responses to unambiguous human actions.
However, it is much more difficult to learn how to respond cor-
rectly to context-dependent, ambiguous actions. For example,
consider utterances like “How much is it?” which do not explic-
itly state the topic of conversation. In some special cases, it is
possible to infer the relevant context from features directly ob-
servable through the robot’s sensors, such as in a camera-shop
scenario [5], [6], where the location of the robot and customer
provided information about which camera was being discussed.
More generally though, the relevant context is hidden, i.e., not
directly observable.

To explore the problem of hidden context, in this work, a travel
agency scenario is presented, where the topics of conversation
(travel packages) are abstract entities, which are not directly
observable from the sensor data. Since the topic of conversation
is hidden, some additional information about the state of the
interaction must be modeled in order for the robot to form
correct responses to ambiguous customer questions.

The second important problem of learning social-robot in-
teraction logic is interpretability [8], [9]. Previous approaches
to data-driven human–robot interaction, such as [5] and [6],
use models that are not understandable by a human designer.
However, interpretability is a desirable characteristic for sev-
eral reasons. For example, in the case that the machine learning
algorithm makes a mistake, it is advantageous for a human be-
havior designer to fix any errors in the learned interaction logic
by hand. Furthermore, in many fields, such as health, finance,
and defense, where the decisions of a robot may have signifi-
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cant consequences, it is imperative to understand the reasoning
behind those decisions [10].

In this study, the problems of hidden context and interpretabil-
ity are solved by modeling the structure of the interaction itself
and learning human-readable robot-interaction rules. With the
proposed technique, the topics of conversation are automatically
discovered by clustering speech actions observed in human–
human training examples, based on action co-occurrence fre-
quency. Then, a topic-state estimator is trained to infer the topic
of conversation at each turn in a real-time interaction. Human-
readable interaction rules are learned based on speech action
transition probabilities and the inferred topic states in the train-
ing data. These rules dictate how the robot should respond in
real-time based on the customer’s previous action and the cur-
rent topic state.

II. RELATED WORK

A. Data-Driven Robot Interaction Logic

In data-driven approaches, to create a robot-interaction logic,
the robot imitates the outward behaviors observed in human–
human, or teleoperated example interactions, without requiring
a model of the world or input from a human designer.

One popular data-driven approach is to crowd-source large
amounts of human–human interaction data in virtual worlds
from which to train a virtual agent or robot [11]–[13]. These
works differ from ours since their data was collected through
a virtual world, which was not susceptible to the sensor noise
present in real-world interactions.

A second approach is to collect human–human interaction
data and manually annotate it for supervised learning, such as
[14] for a robot tutor. In comparison, our proposed approach
does not rely on expensive manual annotation of the data.

A third approach is to learn from unlabeled human–human
interaction data via unsupervised learning. Human action clus-
ter IDs were used as labels in a supervised learning framework
to train a robot shopkeeper, [5], [6]. Their system could only use
information directly observable from the sensors, so it cannot
deal with otherwise unresolvable human actions, e.g., ambigu-
ous questions that depend on topic of conversation.

B. Topic in Dialog

The main focus of this study is to model the topic of con-
versation as it changes over the course of an interaction for the
purpose of generating appropriate robotic actions.

Latent Dirichlet allocation (LDA) is a statistical approach
to discovering the topic based on word frequency and co-
occurrence [15]. Methods based on LDA are popular unsu-
pervised techniques for discovering the topics in sets of large
documents [16], [17]. However, in contrast to the topic of large
documents, the topic of conversation changes dynamically over
time, so these approaches are not directly applicable to our
problem.

Linguistic studies of discourse introduced the concepts of
focus of attention and attentional state, which are more closely
related to the topic of conversation [18], [19]. However, these

theories rely on syntactic parsing and identification of individual
words, so they are not directly applicable to situations with many
speech-recognition errors.

Probabilistic graphical models, such as hidden Markov mod-
els (HMM) have been the common methods for tracking states
that evolve over time [20]. For example, [21] uses a dynamic
Bayesian model to discover the underlying states of multiparty
conversations, and [22] uses an HMM to discover interaction
structure of tutoring sessions. These works mainly focus on de-
scriptive analysis of data, and do not use their discoveries for
generating robot or agent behaviors.

A topic tracking system for human–robot dialog is presented
in [23] which discover the topics of conversation automatically
from interaction data based on word co-occurrences; however,
they did not formally evaluate it to demonstrate that it works.

A system for automatically estimating joint attention state
from visual/auditory input data, comparable to our topic state
estimation approach is presented in [24] (Section V-C).

C. Dialog Acts

Dialog acts are abstract representations of actions in dialog
indicating intent, such as greeting, request, and yes–no ques-
tion [25]. Unsupervised learning has been applied to automat-
ically discover dialog acts from lexical and contextual features
of utterances [26], [27]. A Markov random field based cluster-
ing method is introduced in [27] to discover dialog acts from
transcripts of tutoring sessions. The goal of speech clustering
(Section III-D) is similar to unsupervised dialog act learning,
but finds actions at a lower level of abstraction than is typical of
dialog acts.

Adjacency pairs are pairs of dialog acts from alternating
speakers that frequently co-occur, such as question→statement
[28]–[30]. The robot action predictor (Section IV-B) works on
the basis of adjacency pairs of speech clusters that are extracted
from human–human interaction examples.

D. Coreference Resolution

Modeling hidden context so the robot can answer ambiguous
questions is related to coreference resolution (CR)—the process
of determining whether two referring expressions refer to the
same entity—and anaphora resolution—the process of deter-
mining how a previously mentioned term affects the meaning
of a related term mentioned later [31].

The state-of-the-art CR system is an artificial neural network
trained on manually annotated text and manually transcribed
speech [32]. An approach adapted for online chat dialog is pre-
sented in [33]. However, CR systems have not been designed to
be reliable against speech-recognition errors, typical in human–
robot interaction. In contrast, our proposed approach to answer-
ing ambiguous questions does not rely on manually annotated
data and is robust to some speech-recognition errors.

E. Dialog Systems

Some spoken dialog systems use data-driven approaches to
learn dialog policies from unlabeled datasets, such as Twitter
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[34], [35]. However, these approaches do not model the state,
i.e., topic of conversation.

Frame-based dialog systems keep track of the dialog state by
tracking a set of slots and values, representing the user’s goals
[36]. Many approaches to state tracking, including rule-based
systems, graphical models, and artificial neural networks, have
been evaluated on manually labeled benchmark datasets [37],
[38]. The state of the art uses a recurrent neural network [39].
The most successful methods rely on hand-annotated corpora,
so they are not suitable for rapid deployment into new domains.

In nonframe-based approaches, tree-structured ontologies
[40] and Wikipedia article categories [41] have been used to
represent topics of conversation. However, these approaches
depend on humans to specify domain-specific knowledge or to
annotate training data. Thus, they are also troublesome to ap-
ply to novel domains. Our objective is to discover the topic of
conversation automatically, without human input.

III. DATA COLLECTION

The proposed method uses human–human interaction data
to train a robot to perform socially appropriate behaviors in
face-to-face interactions with a human.

A. Travel Agent Scenario

The proposed system is applicable to any domain in which the
participants’ actions are highly repeatable, but for demonstration
a travel agent interaction scenario was chosen to train and test the
system. In the scenario, a customer enters a room, approaches a
table with the travel agent, and they proceed to converse about
the available travel packages until the customer decides whether
or not to purchase one.

Three travel packages were created for the travel agent and
customer to talk about: A trip to the Sahara Desert, a trip to
London, and a boat cruise along the coast of Antarctica. Ad-
ditionally, each travel package had six attributes: Destination,
duration, price, what is included in the package, what there is
to do on the trip, and who else will be going on the trip (other
tourists, a desert-survival guide, etc.).

B. Data Collection

In the data collection procedure, six fluent English-speaking
participants (four male, two female, mean age 24.3, s.d. 3.1)
took turns playing the roles of a travel agent and customer. The
person in the travel agent role was provided with a listing of
travel packages and their attributes. In order to collect a variety
of utterances, the customer was instructed to take turns acting
like three different customer types: A poor student looking for
a budget vacation, an adventurous person looking for a crazy
vacation, and an undecided person who simply wants to collect
information. The travel agent was instructed to greet the cus-
tomer, provide information about the travel packages, and refer
the customer to checkout if a decision was made. An example
data collection interaction is shown in the supplementary video.

C. Data Preprocessing

Interchannel noise suppression and speech segmentation are
first applied to identify the segments of speech in the audio
data. Next, the speech segments were passed through a voice-
to-text module using the Google Speech API. Last, a simple
turn-taking model was applied, in which consecutive utterances
by the same speaker with no intervening utterances by the other
speaker were concatenated together. These steps result in a series
of alternating customer text/travel agent text utterances.

Audio was recorded from 192 interactions with 2481 cus-
tomer / travel agent utterance pairs in total, which is a compara-
ble quantity to other datasets for training robots [5], [13], [42],
[43]. The average number of turns in each dialog was 12.9 (s.d.
3.5). The average number of words in each utterance was 9.3
(s.d. 5.8) for customers and 17.3 (s.d. 12.7) for travel agents.
The automatic speech recognition (ASR) word error rate on a
representative subset of 500 utterances was 23%. The average
length of the interactions was about three minutes.

D. Speech Actions

In human–robot interaction there are two challenges that
make textual-analysis-based dialog approaches impractical.
First, the input is noisy: One HRI study reports that a speech
recognition system that performed with 92.5% accuracy in
75 dBA noise achieved only 21.3% accuracy in a real-world en-
vironment [44]. Second, participants in our studies often speak
casually, with sentence fragments and bad grammar, hindering
extraction of features based on grammatical structure.

Clustering utterances into speech clusters based on simple
lexical features (n-grams) aids in mitigating these challenges. By
grouping noisy utterances together with other similar utterances,
the intended meaning can be recovered by looking at the other
members of the speech cluster.

The speech clusters represent the common speech actions in
the human–human interactions.

E. Speech Vectorization

Before clustering the speech, each customer and travel agent
utterance was vectorized. The utterance vectors consist of n-
grams (uni-, bi-, and tri-grams) of word stems and keywords.
Word stemming was done via Python NLTK’s WordNet-based
lemmatizer (http://www.nltk.org/) and keywords were extracted
using AlchemyAPI (http://www.alchemyapi.com/). The cus-
tomer utterance vectorization had 2577 dimensions and the
travel agent utterance vectorization had 5457 dimensions.

F. Speech Clustering

The dynamic tree cut hierarchical clustering algorithm was
used on the utterance vectorizations to find speech clusters [45].
Customer and travel agent utterances were clustered separately
since their actions did not frequently overlap. A second pass of
automatic processing was performed to remove noisy clusters,
which had very high intracluster distances, and reassigned the
utterances they contained the remaining clusters using a nearest
neighbor-based approach. If an utterance was farther than an
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TABLE I
EXAMPLES FROM THE SPACE OF LEARNED ACTIONS

TABLE II
EXAMPLE OF A SPEECH CLUSTER

empirically set distance from the nearest centroid, it was not
reassigned to a cluster.

In the end, the clustering procedure yielded 113 customer
clusters and 58 travel agent clusters, containing 82% of the ut-
terances in the training data. Due to the high word error rate
and the presence of nonrepeatable utterances (e.g., off-topic
utterances) 12% of the utterances were not clustered. Regard-
less, the speech-clustering procedure successfully revealed the
highly repeatable actions which the proposed technique aims
to learn. Some examples from the space of learned actions are
shown in Table I. Furthermore, Table II shows an example of
one customer speech cluster, illustrating that the members of
speech clusters include similar utterances, but with some natural
variation and speech-recognition errors. These speech clusters
defined the “actions” of the system.

Note, this clustering procedure splits some clusters that
should ideally be merged, namely clusters of functionally-
equivalent but lexically-dissimilar utterances (e.g., “How much
does it cost?” and “What is the price?”). The utterance features
and clustering distance metric are arbitrary, thus they could be
replaced with improved techniques in the future.

Since the robot needs to be able to speak an utterance corre-
sponding to each travel agent speech cluster, a typical utterance
(bottom of Table II) was selected for each by finding the medoid
utterances, i.e., the most similar utterance to all other utterances
in the speech cluster, using the Levenshtein distance metric nor-
malized for utterance length. Since complete utterances with
few ASR errors tend to share the most similarities with other
utterances in the same cluster, typical utterances tend to be well
formed and easy to understand.

Fig. 2. System runtime diagram. The topic module is within dashed lines.

IV. ACTION PREDICTION

Two of the three main components of the proposed system are
the utterance to speech action matcher and the robot action pre-
dictor (Fig. 2). Preliminary action prediction results using only
these components demonstrate the necessity of incorporating
topic of conversation to deal with ambiguity.

A. Utterance to Speech–Action Matching

In the proposed system, a customer’s action is recognized by
vectorizing their utterance text and matching the vectorization
to one of the known customer speech actions. Matching using
a nearest centroid classifier with the cosine distance metric per-
formed well empirically, achieving 91% utterance-to-speech-
action matching accuracy in a tenfold cross validation.

B. Robot Action Prediction

A robot system must decide which action to take next. In the
proposed system, this robot action prediction is accomplished
by learning a set of human-readable interaction rules from the
sequences of speech action IDs in the human–human interaction
training data. Action (speech cluster) IDs (Table I) are discrete,
symbolic representations of abstract actions.

More specifically, the set of interaction rules consists of IF
customer action, THEN robot action style rules based on cus-
tomer action to travel agent action transition probabilities com-
puted from the human–human data. A rule is created for each
customer action by finding the most likely travel agent action
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TABLE III
EXAMPLES OF RULES LEARNED BY THE SYSTEM

to follow using (1), where aC is the preceding customer ac-
tion, AT A is the set of all possible travel agent actions, aT A is
the robot’s action (a travel agent action), and P (a|aC ) is the
transition probability from aC to a.

aT A = argmax
a∈AT A

P (a|aC ) . (1)

Since the goal of the system is to learn repeatable behaviors,
customer action to travel agent action pairs that occurred only
once in the training data were pruned.

During operation of the system, after predicting the action
aT A , the robot speaks the typical utterance (bottom of Table II)
of the corresponding speech cluster.

C. Preliminary Evaluation and Discussion

The system was evaluated on the 192 human–human trained
interactions using hold-one-out cross-validation and a human
evaluator categorized the system’s responses to each customer
utterance as either correct or incorrect. Most importantly, the
system response correctness to ambiguous and unambiguous
customer actions was examined separately.

The system learned many correct interaction rules, but some
incorrect rules (Table III). In particular, rules with ambiguous
customer speech actions were mostly incorrect. In Table III,
The rule for the ambiguous customer action 2017 with typical
utterance “Okay, and how long is that trip?” only contains a
single predicted travel agent action, “That is ten days”. This
is the correct response for the Antarctica travel package, but it
would be incorrect for either of the other two travel packages.

Many customer utterances are ambiguous with respect to
which travel package is under discussion, so predicting the
robot’s action based on the customer’s action alone is insuffi-
cient. In fact, only 39% of the system’s responses to ambiguous
customer actions were correct, compared to 66% percent of the
responses to unambiguous customer actions.

V. TOPIC ESTIMATION

To address the problem of ambiguous utterances, a topic
state estimator was incorporated to model topic of conversa-
tion (Fig. 2). Observations of the interaction data motivated the
design of a novel topic clustering algorithm. The topic clusters
are used to estimate the topic of conversation in real time so the
robot can respond to ambiguous customer actions.

Fig. 3. (Background) The training data, with boxes representing speech ac-
tions annotated with topic. (Middle) A single interaction sequence, showing
topic and topic state. (Foreground) A topic “run” containing ambiguous cus-
tomer utterances (ambiguous utterances are italicized).

A. Interaction Structure

The core of each training interaction consisted of the customer
asking questions about the travel packages. Customers tend to
ask several questions about one specific travel package at a time
and then ask about another travel package. They typically asked
about at least two of the packages per interaction. Interactions
usually opened with an exchange of greetings and introduction
of the travel packages, and closed with the travel agent thanking
the customer.

These observations indicate that there are topics which consti-
tute phases of a conversation, e.g., London, desert, and Antarc-
tica. In fact, the proposed algorithm (Section V-B) discovered
two other conversational phases, corresponding to opening and
closing, although this was not initially anticipated. Here, the
term “topic” encompasses not only the target topics but also
these additional two conversation phases.

Visualizing the interaction sequences helped us to understand
their structure. The background of Fig. 3 shows the interaction
structure of several interaction sequences, as described above.
Each box represents a speech action, and those speech actions
that are uniquely associated with a single topic are color-coded.
Speech actions that are not associated with only a single topic
(i.e., ambiguous) are white. Actions associated to the same topic
typically occur together in “runs” where the topic of conversa-
tion remains the same. These topic runs are sometimes inter-
spersed by ambiguous actions (foreground of Fig. 3, with the
ambiguous utterances italicized).

B. Topic Clustering Algorithm

Motivated by the observation that speech actions uniquely
associated with a single topic often occur together, a cluster-
ing algorithm was designed based on action co-occurrence to
automatically discover the structural patterns, including topics
of conversation, in the training data. The end goal of clustering
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TABLE IV
TOPIC CLUSTERING ALGORITHM

actions into topic clusters is an action-to-topic mapping that can
be used to disambiguate customer speech.

The objective is to find sets of actions (topic clusters), whose
members frequently co-occur with each other but not with mem-
bers of any other set. A topic cluster should contain actions
associated with that topic, such as unambiguous actions (e.g.,
“Tell me about the London trip?”, “It includes five nights in a
hotel”), and exclude actions associated with other topics, such
as ambiguous questions (e.g., “How long is that one?”, “What’s
included in the price?”) and backchannels (e.g., “Okay”).

To quantify the level of co-occurrence between each pair of
speech actions, subsequences of length 2–5 actions were gen-
erated from the original interaction sequences and the support
[46] between pairs of actions was calculated using (2), where
(ai, aj ) is the action pair, H is the set of all interaction sub-
sequences, and h is a generic interaction subsequence. Thus,
the support of action pair (ai, aj ) is equal to the proportion of
interaction subsequences that contain that pair.

Supp(ai, aj ) =
|{h ∈ H; (ai, aj ) ⊆ h}|

|H| . (2)

With (2) a support matrix, Supp, was generated repre-
senting the support of all possible pairs of actions, Supp ∈
R|AC ∪AT A |×|AC ∪AT A |

≥0 , where AC is the set of all customer ac-
tions and AT A is the set of all travel agent (robot) actions.

The proposed topic clustering algorithm (Table IV) takes the
support matrix Supp as input and returns a set of topic clusters
T. A topic cluster τ , τ ∈ T is defined as a subset of speech
actions a, a ∈ AC ∪ AT A . The topic clusters τ are mutually
exclusive (an action can only be in one topic cluster).

The first step of the algorithm (Step 1 in Table IV) is to
filter out action pairs with support below a threshold, θ1 , since
actions that co-occur infrequently tend to only co-occur at all
due to random noise or speech clustering errors.

Next, the algorithm initializes the topic clusters by creating
seed clusters from the action pairs with very high support, using
a higher threshold, θ2 (Step 2). Action pairs with high support
frequently co-occur, so they probably belong to the same topic.
This step is accomplished by selecting pairs of actions with
support above θ2 and then performing connected components
analysis to find groups of connected actions.

Subsequently, the topic clustering procedure, which was in-
spired by iterative and density based methods for graph clus-
tering [47], consists of two subroutines that iterate until the
algorithm converges (i.e., a cycle of repeating states is detected)
or a maximum number of iterations is reached (since a cycle
could be arbitrarily long). One subroutine adds actions to topic
clusters and the other removes actions from topic clusters.

Before each of the subroutines is run, the Fit, defined in (3),
of each action to each topic cluster is computed (Steps 3 and 5),
which indicates how well an action a belongs in a topic cluster
τ . This metric works by looking at the proportion of support
of the action a with each of the actions in the topic cluster τ
to support that action with all actions in all topic clusters T. If
an action has a high degree of co-occurrence with most of the
actions in a certain topic cluster but not with actions in any other
topic clusters, then it probably uniquely belongs to that topic.

Fit(a, τ) =

∑
aτ ∈τ Supp (a, aτ )

∑
τ ∈T

∑
aτ ∈τ Supp (a, aτ )

. (3)

During the Add subroutine (Step 4), all actions a that meet two
criteria are added to the topic cluster they best fit, τbest . First,
in order to assign actions to their best-fit clusters the action
a should match to τbest above a Fit threshold, θ3 . Second, to
exclude ambiguous actions, the action a should fit τbest at least
θ4 times better than any other cluster. The second subroutine,
Remove (Step 6), removes all actions from topic clusters that
do not meet the above criteria.

The values for θ1 and θ2 were chosen by looking at the support
for each action pair, which has a long tail distribution. θ1 was
set to six in order to filter actions at the end of the long tail and
θ2 was set to 90, a value well above the elbow. θ3 and θ4 were
chosen arbitrarily. Values of 0.4 and 3 were found to work well,
respectively.

When run on the human–human interaction training data, the
algorithm converged after 154 iterations and discovered five
topic clusters. In an experiment with 108 runs with various
parameter values, all of them converged. The minimum, max-
imum, and average number of iterations before the algorithm
converged were 93, 251, and 153 (s.d. 28). An average run took
10.0 s (s.d 1.0). The maximum cycle length was 12 iterations.

Of the 171 total actions, the topic clustering algorithm clus-
tered 53% (90) of them and left out the remaining 81. Based on
manual topic annotations, 75% (129) of the 171 actions were
clustered into the correct topic cluster, or correctly left out (ac-
tions labeled “Other”). Many actions that were incorrectly clus-
tered into the wrong topic or excluded were not well-represented
in the training data or contained speech clustering errors. How-
ever, among the 90 actions that fell into topic clusters, 90%
(81) of them were in the correct topic cluster. Thus, the clusters
successfully identified the relevant topics.

C. Topic State Estimation

In each interaction there is an underlying topic state (middle
of Fig. 3), which is persistent over time and represents which
of the topics discovered by the topic clustering algorithm the
conversation is about at each speaker’s turn. This topic state is
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Fig. 4. Procedure for training the state estimator.

not directly observable from the actions alone, since there are
many ambiguous actions and the topic clustering algorithm only
identifies a subset of the topic-specific actions. To estimate the
topic state for robot action prediction a topic state estimator was
designed (Fig. 2).

The set of possible topic states S was defined to represent
the topics of conversation discovered by the topic clustering
algorithm. That is, each topic cluster τ , has a corresponding
topic state sτ , sτ ∈ S. Each timestep t of an interaction has some
topic state st . At each step the topic state estimator determines
whether the topic state st remains the same or changes based on
the most recent action at .

The topic state estimator is a logistic regression classifier that
takes an utterance vectorization as input and outputs the new
topic state. The topic state is estimated after each utterance,
but since some utterances, such as ambiguous questions, do not
change the topic of conversation, an additional class, “no state
update”, was used to indicate no update or insufficient evidence
to update the topic state. Training the topic state estimator con-
sists of three steps (Fig. 4).

1) Compute action-to-topic-cluster transition probabilities.
For each speech action a the probability of transitioning
to topic τ was computed from the training data by finding
each instance of a, at , and looking ahead at the topic
cluster of the next travel agent action, aT A,t+1 , using (4).
Since customer actions are often ambiguous, the transition
probabilities were based on the topic of the next travel
agent action, which provided more information about the
topic of conversation.

Ptrans(a, τ) =
|{at ; at = a ∧ aT A,t+1 ∈ τ}|

|{at ; at = a}| . (4)

2) Apply a threshold, θ5(=0.60), to the action-to-topic-
cluster transition probabilities to select actions that predict
the next topic with high probability. Such actions indicate

that the topic state should be updated based on the most
highly predicted topic cluster. For example, action 2030,
with the typical utterance “What can you do in London?,”
was followed by actions in topic cluster three (London)
82% of the time. This is sufficient evidence to change
the topic state to s3 when the system observes utterances
similar to those in action 2030.

Actions for which transition probabilities to all topics were
below θ5 were selected as candidate examples of the “no state
update” class. Since this set of actions was large, candidates for
training the classifier were randomly selected until the number of
“no state update” example actions was on par with the number of
example actions for the other topic classes. Unselected candidate
actions were not used to train the classifier.

The advantage of selecting all actions that predict the next
topic with high probability, instead of the only actions that pre-
dict topic transitions (between two topics) is that it enables more
robust topic state estimation that can recover from errors. For
example, when the estimator misses the topic state update at the
first utterance in a topic run, there is a chance of updating the
topic state correctly during the next utterance in the topic run.

3) Train the logistic regression classifier on the utterances
from the customer actions (speech clusters) and topics
found in Step 2. The training inputs to the logistic regres-
sion classifier consist of the utterance vectorizations of all
the utterances in the speech clusters that predict the next
topic with high probability. Their corresponding outputs
are the most highly predicted topic states sτ or the “no
state update” class.

Training a logistic regression model on the contents (utter-
ances) of the customer speech actions takes advantage of statis-
tical learning to make the topic state estimation more robust to
variations in speech not represented in the training data, while
still providing some degree of interpretability since the actions
and topics that were used for training are easy to see.

The topic state also needs to be updated based on the robot’s
actions, which is a simpler procedure than updating based on hu-
man actions since the robot’s actions are explicitly represented
in the system during run-time. Whenever the robot action pre-
dictor outputs a speech action that predicts the next topic with
high probability, the topic state estimator updates the topic state
directly. An example of a robot action that updates the state is,
3016 “Okay, that’s a great choice” → Closing.

After training, the topic state estimator achieved a predic-
tion accuracy of 70.3% on a manually annotated subset of 15
interactions containing 424 utterances.

D. Robot Action Prediction With Topic State

After the topic states are estimated for each turn in the training
interactions, the interaction rules are trained. The topic state was
incorporated into the previously proposed robot action predictor
(Fig. 2) by including topic state in the conditional probability
that is used to learn the interaction rules, as shown in (5), where
st is the topic state at time t.

aT A,t = argmax
a∈AT A

P (a|aC,t , st) . (5)
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TABLE V
EXAMPLES OF RULES LEARNED BY THE SYSTEM WITH TOPIC STATE

Thus, a customer speech action/topic state pair is input to
the action predictor and the most frequent travel agent action
observed following that pair in the training data is returned. The
rest of the system works the same as described in Section IV.

E. Interaction Rules With Topic State

Readability of the interaction rules learned by the system with
topic state (Table V) allows a human designer to understand how
the robot will respond to input customer actions, and the rules
that include topic state reveal how the topic of conversation
affects the robot’s decision.

The rules learned with topic state allow the system to re-
spond correctly to ambiguous customer actions. For example,
Table V shows three rules learned for responding to the ambigu-
ous customer action 2017 (“Okay and how long is the trip?”).
Each of the three rules provides the correct information about
the travel package indicated by the topic state. Incorporation
of topic state solves the problem of ambiguity illustrated in
Section IV-C, where the without-state system could learn only
a single response to customer action 2017.

In a second preliminary offline evaluation, the system with
topic state responded to ambiguous customer utterances with a
higher rate of correctness than the without-state system (62%
versus 39%, χ2(1, N = 190) = 17.70, p < .001), and performed
better overall on all customer utterances (67% versus 55%, χ2(1,
N = 470) = 12.06, p < .001). Thus, incorporating knowledge of
the interaction structure aided in resolving ambiguous speech.

VI. OFFLINE SYSTEM EVALUATION

A more thorough offline evaluation was conducted on the
human–human data to compare the performance of the proposed
system to several systems using state-of-the-art techniques.

A. Experimental Design

The focus of this study was to develop a technique for generat-
ing appropriate robot behaviors by modeling the structure of the
interaction, so the experimental design compared the behaviors
of six action prediction conditions.

Nearest neighbor worked by matching the customer’s ut-
terance to the closest customer utterance in the training
data using the cosine distance between the utterance vectors
(Section III-E). The robot then performed the same travel agent

utterance that followed in the training data. This is a commonly
used baseline for data-driven dialog systems [34], [37].

Without-state was the same as the proposed system but with-
out the topic state estimation module (presented in Section V).
This condition was chosen to examine the effects of incorporat-
ing the state estimation module.

Non-negative matrix factorization (NMF) topic was the same
as the proposed system but used NMF instead of the proposed
topic state estimator. NMF, an unsupervised topic modeling al-
gorithm similar to LDA, is a state-of-the-art method for topic
modeling of small datasets [48], [49]. The topic model was
trained by setting the NMF parameters to discover five top-
ics from the human–human dataset, using the term frequency-
inverse document frequency representations of utterances as
input. During runtime, the topic state was updated whenever
the maximum NMF topic of an utterance was greater than an
empirically-set threshold (0.05), otherwise the previous topic
was retained. This condition was chosen to compare to an ex-
isting topic modeling method.

Recurrent neural network (RNN) consisted of a many-to-one
recurrent neural network with three layers: An input layer cor-
responding to the customer utterance vector, a 100-unit RNN
layer, and a softmax output layer with each unit corresponding
to a robot speech cluster ID. The RNN was trained for 1000
epochs using the categorical cross entropy loss function and the
Adagrad update function [50]. The learning rate was 0.001 and
the batch size was 128. For prediction, the customer’s utterance
vectorizations were input and the typical utterance of the pre-
dicted speech cluster was the final output. RNNs are a widely
used machine learning approach for end-to-end dialog systems
[35], [51] and other natural language processing tasks [52], [53];
therefore, they are a suitable for comparison.

Long short-term memory (LSTM) was identical to the RNN
system, except the RNN layer was replaced by an LSTM layer.
LSTMs were designed to overcome the shortcomings of RNNs
in modeling long term dependencies [54] and have recently
been used for dialog systems [51]. The LSTM system can po-
tentially retain topic information in memory longer, so it was
hypothesized to perform better than the RNN system.

The proposed consisted of the complete system introduced in
the previous sections.

The prediction accuracies for the subsets of ambiguous and
unambiguous customer actions were also separately analyzed.
It was expected that all the systems would perform equally
well on the unambiguous actions, but the proposed system
would perform better on ambiguous actions than the other
systems.

B. Evaluation Procedure

Hold-one-out cross validation was used to train and test the
system. That is, to evaluate on each of the 192 interactions, the
system was trained on the other 191 interactions (192 folds).
36 interactions (about a third of the dataset), containing 500
utterance predictions, were randomly selected for evaluation
by a human evaluator. An expert annotator labeled the 500
customer utterances as either ambiguous or unambiguous. The
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TABLE VI
OFFLINE ACTION PREDICTION RESULTS ON ALL CUSTOMER UTTERANCES, AND

THE AMBIGUOUS AND UNAMBIGUOUS SUBSETS OF CUSTOMER UTTERANCES

(ASTERISKS REPRESENT COMPARISON WITH PROPOSED ∗ p < .05,
∗∗ p < .01, ∗∗∗ p < .001)

TABLE VII
OFFLINE EVALUATION YATES’ CHI-SQUARED TEST RESULTS

ambiguous subset of the data contained 201 utterance pairs and
the unambiguous subset contained 299 utterance pairs.

One human evaluator (F, age 38), blind to the experimental
conditions, evaluated each predicted robot action with a binary
label of either correct or incorrect. To receive a correct label
the robot’s action must have provided the correct information.
If the customer did not request any specific information, then
the criterion was that the robot’s action must be socially ap-
propriate. The evaluations were made based on transcripts of
the human–human interactions automatically transcribed using
ASR. In the case that the customer’s utterance was clipped or
contained too many ASR errors for the evaluator to determine
if the predicted action was correct or not, the instance was not
included in the evaluation (6% of all instances). Evaluations by
a second evaluator on ten percent of the 500 instances showed
a high degree of agreement, with a kappa coefficient of 0.80, so
the evaluations were judged to be reliable.

C. Offline Evaluation Results

Table VI shows the results of the offline evaluation. A Yates’
chi-squared test was used to test for statistical significance be-
tween the proposed system and the other systems (Table VII).

On the ambiguous customer utterances the proposed system
performed significantly better than all other conditions. On the
unambiguous customer utterances there were no significant dif-
ferences between the proposed system and the other systems,
except the nearest neighbor system (proposed 74.5% versus
nearest neighbor 58.5%, χ2(1, N = 469) = 14.47, p < .001).
On all utterances the proposed system performed significantly

better than the other systems, except the LSTM (proposed 69.3%
versus LSTM 65.5%, χ2(1, N = 469) = 1.24, p = .265).

The proposed system outperformed all other systems in han-
dling ambiguous customer questions, the focus of this study.
Additionally, the proposed system provided a human readable
representation of the interaction logic. Although there was no
significant difference between the proposed system and LSTM
on all utterances, the proposed system performed significantly
better on the ambiguous customer utterances (proposed 62.1%
versus LSTM 47.7%, χ2(1, N = 195) = 7.55, p = .006).

Although LSTMs were designed for modeling long term de-
pendencies, the LSTM system failed to learn the topic depen-
dence of ambiguous utterances in this evaluation. LSTMs (and
RNNs) typically require very large amounts of data to effec-
tively capture such dependencies, so the small dataset size may
have caused their poor performance. The ability to learn from a
small dataset is one of the strengths of the proposed system.

Thus, the proposed system outperformed the state-of-the-art
unsupervised learning techniques at dealing with ambiguity in
human speech in the travel agent interaction scenario.

VII. USER EVALUATION

A user study was conducted to evaluate the proposed system
with a real robot interacting with real people. A trial example
and some special cases are shown in the supplementary video.

A. Experimental Design

The experimental design consisted of a within-participants
design with three experimental conditions: 1) the proposed sys-
tem, 2) the without-state system, and 3) the nearest neighbor
based system, as described in Section VI-A.

B. Participants

Fifteen external participants (nine male, six female, mean age
34.3, s.d. 8.1) were recruited, all fluent English speakers with
little to no experience interacting with robots, and no knowl-
edge of the details of the experiment beyond the instruction’s
contents.

C. Experimental Setup

Participants interacted with ERICA, an android in the form
of a young woman (Fig. 1) [55]. The android has 19 DOF, in-
cluding 13 actuators in the face for eye gaze, facial expressions,
and speech movements. She uses Hoya’s VoiceText software
(http://voicetext.jp/) to synthesize speech and ASR available in
the Google Speech API to transcribe human speech collected
through a handheld microphone. An array of ceiling-mounted
sensors allows the robot to track the positions of people in the
room and direct her gaze at them [56].

During the interactions, the participant’s speech was collected
in real time and fed into the run-time system (Fig. 2). The robot’s
actions were selected by the robot action predictor and synthe-
sized using the android’s speech synthesis. Facial expressions
and gestures (smile, head nod, etc.) were randomized during
each robot action to make her more animated. The robot’s lip and
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trunk movements were automatically generated in synchrony
with the speaking rhythm based on the audio output from the
speech synthesizer [57]. Interactions were recorded using three
1080p high resolution webcams and a microphone for the par-
ticipant’s speech, and the android’s speech stream was recorded
directly to file.

D. Procedure

The participant played the role of a customer and the robot
acted as a travel agent. Participants were instructed to role-play
three interactions in each of the experimental conditions (nine
interactions per participant). In order to test the robot’s behaviors
in response to a variety of different customer behavior patterns,
each interaction was role-played as one of the three customer
types used in the human–human data collection.

Each interaction started with the participant standing near the
door, and then they were instructed to walk up to and greet the
android before stating what they were looking for. Furthermore,
they were instructed to finish each interaction by stating their
decision—which travel package they wished to purchase or if
they were still undecided—and then walk back to the starting
location. Last, the participants were instructed to treat each
interaction as if it was the first and to forget whatever information
was collected in previous interactions.

The order of the experimental conditions was varied for each
participant and the order of the customer types was kept the
same for each condition to reduce ordering effects. After each
round of three interactions in one condition, the participant was
instructed to fill out a questionnaire. Since it was not clear to
the participants whether some of the robot’s behaviors were
correct or not (e.g., when providing a price), the experimenter
kept a tally of the number of correct and incorrect robot actions
during each condition and provided the participant with that
information. The participant then completed a questionnaire.

E. Measurement

The effects of the experimental conditions on the robot’s be-
havior were measured in two ways. A questionnaire was used to
collect the participant’s subjective, qualitative judgments of the
robot’s behaviors, and transcripts of the experiment interactions
were annotated to obtain an objective count of the number of
correct and incorrect actions.

1) Questionnaire: A questionnaire containing five questions
was designed to compare the participants’ subjective ratings.

� Q1. How understandable was the wording and flow of the
robot’s speech? (1 = “very difficult to understand”, 7 =
“very easy to understand”). The proposed and with-state
systems should be the easiest to understand since the robot
speaks the typical utterances of speech clusters.

� Q2. Were you able to get the information you asked for?
(1 = “not at all”, 7 = “yes, completely”). The proposed
system should provide the most information since it is
designed to respond to ambiguous questions.

� Q3. How much effort was required to get the information
you asked for? (1 = “completely effortless”, 7 = “maxi-
mum effort”). The proposed system should require the least

TABLE VIII
USER STUDY RESULTS (p VALUES REPRESENT POST-HOC TUKEY TEST

COMPARISON WITH PROPOSED)

effort since it should make fewer mistakes, minimizing the
need to rephrase questions.

� Q4. How well did the robot respond to ambiguous ques-
tions? (1 = “failed completely”, 7 = “greatly succeeded”).
The proposed system should respond to ambiguous ques-
tions the most accurately since it can track the topic of
conversation.

� Q5. How do you think the robot performed overall (in-
cluding the above points)? (1 = “failed completely”, 7 =
“greatly succeeded”). The proposed system should per-
form the best overall for the reasons stated above.

2) Quantitative Measurement: In addition to asking the par-
ticipants their subjective judgements, a quantitative evaluation
was conducted in which the robot’s actions were rated by a
human evaluator.

One evaluator (male, age 22), blind to the experimental con-
ditions, evaluated the robot responses in all 135 interactions (15
participants × three conditions × three interactions per condi-
tion) using the same procedure as in Section VI-B. 3% of all
instances were excluded from the evaluation because of ASR
errors in the experiment transcript that made them impossible
to judge. Evaluations by a second evaluator on ten percent of
the data showed a high degree of agreement, with a kappa coef-
ficient of 0.80. So, the evaluations were judged to be reliable.

It was hypothesized that the proposed system would have the
highest rate of correct actions, followed by the without-state
system, and the nearest neighbor system performing the worst.

F. Results

1) Questionnaire Results: Table VIII shows the results for
the questionnaire. One-way repeated measures ANOVA with
Greenhouse–Geisser correction determined that there was a sta-
tistically significant effect of the experimental conditions on
each of the questionnaire responses. Q1. F(1.283, 17.963) =
14.884, p < .001; Q2. F(1.642, 22.988) = 14.512, p < .001;
Q3. F(1.554, 21.753) = 19.409, p < .001; Q4. F(1.746, 24.450)
= 18.984, p < .001; and Q5. F(1.523, 21.322) = 41.323, p <
.001.

Posthoc Tukey tests (Table VIII) found significant differences
between the proposed system and the other two systems on all
questions, except for the proposed and without-state systems on
Q1.

In conclusion, the questionnaire responses supported the hy-
potheses, with proposed rated the best on all questions, followed
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by without-state (with the exception of Q1), and the nearest
neighbor system coming in with the worst ratings.

2) Quantitative Results: The last row of Table VIII shows
the quantitative evaluation results, each percentage representing
the mean robot action prediction correctness computed over
all experiment trials (N = 15) in the indicated experimental
condition.

The proposed system achieved a mean robot action predic-
tion correctness rate of 65.2%, without-state 54.2%, and nearest
neighbor 49.2%. A one-way repeated measures ANOVA deter-
mined that the experimental conditions had a statistically signif-
icant effect on the mean rates of robot action correctness: F(2,
28) = 12.821, p < .001. A posthoc Tukey test (Table VIII) found
statistically significant differences between the proposed con-
dition and the two other conditions. Thus, the proposed system
performed better than the without-state and nearest neighbor
systems. Therefore, this evaluation validates the effectiveness
of the proposed system.

G. Topic State Estimation Results

The proposed topic state estimator estimated the state cor-
rectly 69% of the time and recovered on the next turn 18% of
the time in the case of errors. Thus, the estimator was able to
generalize from the training data and was robust to some errors.

H. Analysis of Errors

The system made incorrect responses for five reasons: Action
matching errors (33% of all errors), customer utterances not
present in the training data (23%), topic state estimation errors
(18%), incorrectly learned rules (18%), and ASR errors (8%).
This suggests that the system’s performance could be increased
by focusing improvements on the utterance-to-action matching
mechanism and dealing with out-of-scope customer utterances.

VIII. DISCUSSION AND CONCLUSION

The main objectives of this work fit under the general goal
of learning interaction behaviors for a robot using data-driven
methods, without input from a human designer. First, the system
was to learn how to respond to ambiguous human actions that
depend on hidden state. Second, the learned behaviors were to
be represented in a human-readable way.

A. Human-Readable Interaction Rules

Human-readability enables debugging of faulty robot behav-
iors by a designer. In future work a hybrid system could learn
social robot interaction logic from data but also allow for manual
debugging and adjustment. Additionally, rule interpretability al-
lows a designer to examine the list of robot interaction rules in
order to validate them for safe operation.

The proposed system achieves human-readability in two
ways: First, by finding an explicit set of interaction rules, which
map a clearly-defined set of human actions to a clearly-defined
set of robot responses, and second, defining a discrete set of
topics makes the dependence on hidden state explicit. Both are
important for interpretability of the interaction logic.

In contrast, neural network architectures such as RNNs,
LSTMs, and deep neural networks with attention, as presented in
[7] may achieve higher prediction accuracy with larger datasets,
but they are black boxes. The downside of such machine learn-
ing models in general is that the reasoning behind their decisions
is relatively unclear to human understanding.

B. Learning Topic From Action Co-Occurrences

This work presents a novel approach to discover topic by clus-
tering actions based on action co-occurrences. The proposed
topic clustering algorithm is unique since it is based on ab-
stract, discrete symbols representing actions, and not any lower
level information, like words or language. There are at least two
advantages to discover topics through action co-occurrences
rather than textual analysis. First, by forgoing textual analy-
sis, and representing actions with discrete symbols instead, the
proposed technique can be applied to other languages and even
other modalities. Second, techniques that rely on textual analysis
(e.g., [18], [19]) are reliant on having error-free, grammatically
correct sentences, so it is difficult to apply them to automati-
cally transcribed, natural, human conversation data with many
disfluencies and ASR errors.

An additional result of operating at the level of actions is that
the topic clustering algorithm learns structure in the pragmatic,
social level, rather than the semantic level. This enables it to
discover that two actions are about the same topic even when it
is not clear from the textual content. For example, the question
“How much is the Antarctica vacation?” and the answer “It is
$3000” have no distinguishing words that hint they belong to
the same topic, but the high frequency of co-occurrence of these
two actions suggests that they are about the same thing.

C. Applicability to Multiple Modalities

Many techniques focus on text, but the proposed system can
potentially be applied to any modality whose data can be clus-
tered to discover a set of abstract, discrete actions, such as
individuals’ walking trajectories and stopping points [5]–[7]. In
the future this work could be extended to learn facial expres-
sions, hand gestures, and vocal inflections for heightened robot
expressivity. Also, visual attention [24] could be integrated to
enable communication about the physical world.

D. Limitations of the Human–Human Interaction Dataset

The main limitation of the travel agent dataset (Section III)
is the lesser number (six) of participants. In the future, our
proposed system may be applied to data collected in the real
world. Therefore, the lab-collected dataset should have the same
characteristics (but at a smaller scale).

It is reasonable to have only a few participants playing the
travel agent in the training data, as this reflects the reality of the
target domain, where the number of human employees available
for training the system is also limited. Moreover, sometimes
it may even be desirable to train the system on a single travel
agent’s data to learn their specific character and interaction style.
Therefore, the training dataset is sufficient in this regard.
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In contrast, it is important to have variation in customer be-
havior in the training dataset to demonstrate that the proposed
system can learn correct customer speech clusters and interac-
tion rules despite variation.

Greater variation of customer behavior may make customer
speech clustering more difficult. However, the core customer
actions (asking about travel package features, etc.) would remain
the same regardless of the number of customers, so the increase
in variation could be offset by collecting more data, containing
more examples of the core actions. Thus, while the number of
customer participants in the training dataset might have mixed
impact on system performance, it is not a critical weakness, and
it does not invalidate the study’s results.

Furthermore, the number of customers did not affect the pro-
posed system’s generalizability: In the offline experiment, in
which the system was evaluated on interactions from the train-
ing dataset with six participants, the rate of correct robot actions
was 69%. In the user study, which was conducted with 15 new
participants, the rate of correct robot actions was 65%. The small
difference in performance between these two experiments (4%)
suggests that the proposed system was able to generalize despite
the small training dataset size.

E. Generalizability to Broader Domains and Larger Datasets

In a broader domain (e.g., a real, nonlimited travel agent
scenario with dozens of travel packages), the number of actions
and topics would increase. However, with a large enough dataset,
with sufficient examples of each action and topic for speech and
topic clustering, the proposed system will still be capable of
learning the repeatable aspects of the interaction.

Concerning dataset size (quantity), the set of common ab-
stract actions will remain the same regardless. The number of
phrasing variations of actions may increase with the size of
the dataset, but so also will the number of examples of each
phrasing. The purpose of the proposed system is to learn these
common actions, i.e., the repeatable, core aspects of the interac-
tion. Therefore, the proposed system’s performance is expected
to improve if the size of the dataset is increased and the set of
abstract actions remained constant.

F. Conclusion

This study presented a technique for automatically learn-
ing social robot interaction behaviors, in the form of human-
readable rules, from unannotated human–human interaction ex-
amples that are full of ASR errors, natural speech variation, and
disfluencies. Additionally, a novel topic clustering algorithm
was introduced that discovered topics and phases of interaction
based on action co-occurrences, to resolve ambiguous human
speech. In evaluation, the proposed system performed signifi-
cantly better than the five other systems. The proposed technique
was demonstrated in a travel agency scenario in which human
participants interacted with a real robot. In the future, this behav-
ior learning approach could be extended to multiple modalities,
such as gestures and facial expressions. It would also be ben-
eficial to incorporate online learning to learn during real-time
human-robot interaction.
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