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Learning from human interaction data is a promising approach for developing robot interaction logic, but be-

haviors learned only from offline data simply represent the most frequent interaction patterns in the training

data, without any adaptation for individual differences. We developed a robot that incorporates both data-

driven and interactive learning. Our robot first learns high-level dialog and spatial behavior patterns from

offline examples of human–human interaction. Then, during live interactions, it chooses among appropriate

actions according to its curiosity about the customer’s expected behavior, continually updating its predictive

model to learn and adapt to each individual. In a user study, we found that participants thought the curi-

ous robot was significantly more humanlike with respect to repetitiveness and diversity of behavior, more

interesting, and better overall in comparison to a non-curious robot.
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1 INTRODUCTION

In recent years, opportunities for the public to interact with social robots have become more com-
mon, with robots appearing in education (Chang et al. 2010; Kanda et al. 2004), entertainment
(Kozima et al. 2009; Michalowski et al. 2007), and in the service industry (Severinson-Eklundh
et al. 2003; Triebel et al. 2016). Thanks to the increasing availability of big data, one promising ap-
proach to train conversational robots to interact autonomously with humans is to automatically
learn replicable dialog patterns (e.g., question–answer) from observations of real human–human
interaction, as demonstrated in prior work for robots in the role of a shopkeeper (Liu et al. 2016),
an assistant (Breazeal et al. 2013), a bartender (Petrick and Foster 2012), and a storyteller (Leite
et al. 2016).

While existing data-driven approaches enable a robot to generate socially appropriate behaviors,
such learning-based techniques only learn from previously collected data (Admoni and Scassellati
2014; Breazeal et al. 2013; Leite et al. 2016; Liu et al. 2016; Petrick and Foster 2012; Young et al. 2013)
but are not able to continuously adapt to human actions during live interaction once the initial
interaction strategies have been learned. This can result in a robot that behaves the same way
regardless of the human’s behaviors, which sometimes yields monotonous, boring interactions.
To illustrate, imagine the following conversation (Figure 1) between a customer and a shopkeeper
in a camera shop:

Customer: I am looking for a camera to take pictures of friends.
Shopkeeper: What sort of camera did you have before?
Customer: I just used my phone to take pictures.
. . . after customer and shopkeeper talk for a while. . .
Customer: So anyway, I’m looking for a camera to take pictures of friends.

In this example, the shopkeeper starts his line of questioning believing it will lead to a sale.
However, when the sale does not occur, and the customer later restates his purpose, the interac-
tion becomes a learning opportunity for the shopkeeper. At this point, the human shopkeeper,
having already tried the most promising strategy to make a sale, will be driven by his intrinsic mo-

tivation to try different actions, which could possibly lead to a favorable outcome. From a learning
perspective, this can be seen as an exploration of the interaction space, probing to see how the
customer will react to various actions, such as presenting the customer with a camera or leaving
the customer to look around on their own. In machine learning, the concept of “curiosity” has been
defined to represent an intrinsic reward signal that motivates an agent to explore a feature space
in such a way (Kaplan and Oudeyer 2011; Oudeyer et al. 2007; Schmidhuber 2013).

Inspired by our own human sense of curiosity, we propose an approach that enables a robot
to learn continuously through interaction, driven by an entropy-based “curiosity” mechanism.
Nonetheless, “curiosity” should not kill the robot. That is, the robot should not randomly or naively
explore behaviors in an unconstrained space such that it fails its job as a shopkeeper (e.g., saying
“goodbye” when the customer enters the shop). To ensure that the robot’s responses remain task
appropriate, the structure of common dialog patterns for reproducing high-level behavior can be
learned a priori (Liu et al. 2016; Liu et al. 2017a). Then, during interaction, the robot can learn
about the customer’s individual differences, driven to explore different behaviors by the “curiosity”
mechanism while being constrained by the appropriate pre-learned patterns. Our goal in this work
is not to fully replicate human curiosity, not to exploit learned information in goal-driven behavior,
nor to pursue specific customer information. Rather, our aim is to emulate curiosity sufficiently to
drive the robot to explore a variety of behaviors and learn about customers’ individual differences,
to yield more humanlike, interesting human–robot interactions.
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Fig. 1. A curious robot chooses among the appropriate actions to satisfy its curiosity about the customer’s
individual differences during interaction.

2 RELATED WORK

2.1 Data-driven Approaches for Conversational Agents and Social Robots

There exist some dialog systems that learn the state of a conversation and model it over time, so
that they can always perform the most appropriate action; however, the states, which are formu-
lated as slots and values (Williams et al. 2013; Williams and Young 2007), depend on human de-
signers to specify domain-specific knowledge and annotate training data, so they are not suitable
for unsupervised learning of robot behaviors. In other cases, the systems have not been evaluated
in live interactions with humans (Breuing and Wachsmuth 2012; Jokinen et al. 1998). For social
robots, several studies have aimed to learn robot behaviors for completing the same task as a hu-
man from data collected from online games (Breazeal et al. 2013; Chernova et al. 2011; Toris et al.
2014), remote web users (Leite et al. 2016), and real human interaction data (Admoni and Scassellati
2014; Foster et al. 2012; Nagai et al. 2008). Thomaz et al. developed a framework for online users
to provide feedback to a Reinforcement Learning (RL) agent learning to perform tasks observed
in a game (Thomaz and Breazeal 2006; Thomaz and Breazeal 2008). Leite et al. proposed a semi-
situated learning method to crowdsource dialog lines from multiple authors, with each dialog line
associated with a goal-directed action (Leite et al. 2016). Our work complements these approaches
by considering data collected directly from human–human interaction in a physical environment;
however, we are also interested in a robot that continues to learn based on its intrinsic motivation
to better adapt to each user over time.

2.2 Curiosity-driven Learning

There is some work, especially in the field of sensorimotor learning, on generating autonomous
agent behaviors based on intrinsic motivation, without pre-programmed goals (Kaplan and
Oudeyer 2011; Oudeyer et al. 2007; Schmidhuber 2013). Oudeyer et al. developed a RL algorithm
with the objective of maximizing learning progress (Oudeyer et al. 2007). Kaplan and Oudeyer
demonstrated that a robot is able to explore within its repertoire of motor primitives (Kaplan
and Oudeyer 2011). Action selection strategies based on information gain have also been applied
for spatiotemporal exploration by mobile robots in continuously changing environments (Müller
et al. 2014; Santos et al. 2017). The interactive art sculpture presented in Chan et al. (2015) is a
distributed system with a large sensorimotor space that employed a similar concept of curiosity-
based learning. Their experiment demonstrated that the sculpture gradually shifted to more ex-
ploratory actuation patterns as it learned about its own mechanisms and surroundings through
self-experimentation and interaction.
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Hester et al. presented an RL model that used intrinsic rewards to explore uncertain sensori-
motor spaces and acquire new experiences for training the model (Hester and Stone 2017). It was
tested on a robot that learned to hit a cymbal. Qureshi et al. introduced an intrinsic motivation
system for a social robot to learn when to perform gestures and facial expressions in real-world
interactions based on minimization of state prediction error via RL (Qureshi et al. 2018). Our work
also employs the intrinsic drive of curiosity but for a social robot that generates verbal expressions
and nonverbal motion.

Madani et al. proposed a two-level cognitive system for learning language-to-perception
groundings with adaptive visual perception cast as “perceptual curiosity” and an evolutionary sys-
tem to learn grounding functions to guide “epistemic curiosity” (Madani et al. 2016). As the system
learned, epistemic curiosity drove the robot to ask about objects with low-confidence groundings.
In contrast to their approach, our work focuses on social behavior and uses and entropy-based
metric to explore low-confidence social spaces.

2.3 Robots That Elicit Curiosity in Humans

Some studies have focused on eliciting curiosity in humans for the sake of incentivizing produc-
tivity or improving social interaction. For instance, eliciting curiosity in humans was investigated
for a robot that generated unpredictable responses (Law et al. 2017) and for a robot that demon-
strated curiosity in its verbal expressions (Gordon et al. 2015). Their results showed that such ro-
bot behaviors positively influenced the user’s experience during interaction. Likewise, we expect
that a curiosity-driven robot will have a similar effect. The originality of our work lies in gen-
erating curiosity-driven behaviors via continuous learning, rather than manually implementing
pre-scripted verbal expressions.

2.4 Active Learning for Social Robots

There is work in the area of active learning (Settles 2012) on how robots can increase their overall
knowledge based on asking appropriate questions, choosing what questions to ask, and choosing
when to ask things. For example, Cakmak and Thomaz identified the types of questions that a
robot could ask to guide active learning of new skills, explored their use in human communication,
and evaluated human perceptions of robots that ask such questions (Cakmak and Thomaz 2012).
Thomason et al. has shown that an “inquisitive” robot that uses active learning to learn language-
grounding functions is judged to be more fun to interact with when it asks off-topic questions
(Thomason et al. 2017). The scenarios and goals in these works are different from our work, but
there is overlap in choosing among robot actions to efficiently explore a space and improve a model
based on interaction with humans.

3 HUMAN–HUMAN INTERACTION DATA COLLECTION

A dataset of human–human interactions, described below, was used for the purpose of training
the data-driven robot behavior system, to be presented in Section 4. We used the dataset originally
presented in Liu et al. (2017b).

3.1 Scenario

To observe typical interaction patterns, a camera shop environment was setup in an 8m × 11m
experiment space with three camera models, each at a different location. For each interaction, one
shopkeeper participant interacted with one customer participant. An interaction example is shown
in Figure 2.
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Fig. 2. An example interaction observed in our data collection.

3.2 Sensors

The participants’ speech and position data were recorded as they interacted with each other. A
sensor network with a human position tracking system recorded the participants’ location data
(Brscic et al. 2013). To capture the participants’ speech, they were asked to speak into handheld
smartphones running the Google speech recognition API. To detect the start and stop of speech
activity, participants were required to touch the mobile screen to indicate the beginning and end
of their speech.

3.3 Participants

Fluent English speakers were recruited as participants for the role of the customer. They had varied
levels of knowledge about cameras. A total of 18 participants were employed (13 male, 5 female,
average age 32.8, s.d. 12.4). To obtain a diverse set of behaviors, two different participants were
chosen to role-play as the shopkeeper. They had very different interaction styles, one with a more
outgoing personality (male, age 54) and another with a quieter disposition (female, age 25).

3.4 Procedure

The participants were encouraged to act naturally and focus discussion on the features listed on
the camera spec sheets (8 to 10 features per camera). Customer participants were encouraged to
play with the cameras, browse the shop, or ask camera-related questions. They role-played in
different interactions as advanced or novice camera users to keep them interested and minimize
fatigue. The shopkeeper participants were instructed to wait at the service counter at the start of
the interaction, be polite, and behave according to their role (e.g., greetings and farewells, letting
the customer browse, answering questions, or introducing products when appropriate). As the
example in Figure 2 shows, participants used a variety of fillers (e.g., “you know” and “like”) and
backchannels (e.g., “I see”) in their utterances. Therefore, we believe our setup elicited reasonably
natural behaviors.

Each shopkeeper interacted with nine different customer participants. Each customer role-
played 24 interactions (12 as advanced and 12 as novice) for a total of 432 interactions. Twenty-
seven interactions were removed (16 due to technical failures and 11 due to customers who did
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not follow instructions). In total, we collected 405 interactions, with 4,061 shopkeeper utterances
and 4,115 customer utterances.1

4 PROPOSED TECHNIQUE

To develop a curious robot that continues to learn during interaction, we used a series of techniques
that enable both behaviors and interaction logic to be directly learned from noisy sensor data
without human intervention. The system architecture is shown in Figure 3.

First, using data abstraction techniques from previous work (Liu et al. 2016), the raw data were
processed into a form suitable for input and output to two neural networks.

Then, although the behaviors of the robot are to be driven by curiosity, the robot should still
follow the social rules observable in the human–human data. So we trained an Appropriateness

Learner (the first neural network) on the processed human–human interaction data, for the pur-
pose of constraining the robot’s actions to a subset of socially appropriate actions that it can curi-
ously explore in a particular situation.

Next, we developed a Curiosity Learner (the second neural network) to assign a curiosity score
to each possible robot action. We model curiosity as the drive to minimize the variance of the
prediction error of the consequence of the robot’s actions. Similarly to the shopkeeper, a customer
will generally behave within the norm of certain interaction patterns, which can be used as a prior
for the Curiosity Learner. However, due to individual differences, different customers may react
very differently to a given robot action, and it is these differences to which a curious robot must
tailor its interaction dynamics. Thus, during live interaction, the Curiosity Learner is updated.

4.1 Data Abstraction and Representation

Behavior abstraction was applied to the raw interaction data to reduce the data’s dimensionality
and the effects of sensor noise, thus simplifying the learning problem. Behavior abstraction was
accomplished by action segmentation, motion target and stopping location clustering, applying
models of spatial formations, and action clustering, as originally presented in previous work (Liu
et al. 2016). Here we describe how the data abstraction techniques were used to prepare the in-
put vectors and training targets for the Appropriateness Learner and Curiosity Learner neural
networks. An example of our abstracted representation is shown in Figure 4.

4.1.1 Motion and Spatial Formation Abstraction. The participants’ common motion targets and
stopping locations in the camera shop environment were discovered with unsupervised clustering.
Spatial formations presenting object, face-to-face, and waiting were computed using pre-existing
HRI models (in Yamaoka et al. (2008), Hall (1966), and Kitade et al. (2013), respectively). Below we
refer to the formations as spatial states. Furthermore, a state target is specified for the presenting

object formation, i.e., the object being presented.

4.1.2 Action Sequence Discretization. Each interaction was discretized into a sequence of al-
ternating human and robot actions, with an action identified whenever a participant (1) speaks
an utterance, (2) changes their motion target, or (3) yields their turn by allowing a period of
time to elapse with no action, which we define as a yield action. We denote an interaction as
(h(t ), r (t ),h(t + 1) . . .), where h(t ) represents the human action and r (t ) represents the robot ac-
tion at time t . Each action consists of the participant’s speech, current location, movement arrival
location, movement departure location, spatial state, and state target (in the case of presenting

object).

4.1.3 Action Vectorization. Each action was represented as a vector for input to the learners and
for action clustering. The vectorization procedure is the same as in Liu et al. (2016, 2017a).

1The dataset can be obtained here: http://www.geminoid.jp/dataset/camerashop/dataset-camerashop.htm.
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Fig. 3. Architecture of the proposed system elements. Fig. 4. Example of input vector and training
target. Here, “S” and “C” denote shopkeeper
and customer motion elements, “F” denotes
spatial formation, and “ID” denotes typical ut-
terance ID.

The human customer and shopkeeper utterances were vectorized using common text-
processing techniques. First, stop words were removed from the utterances, a stemmer was applied,
and n-grams were computed for n = 1, 2, and 3. Next, latent semantic analysis (LSA) (Landauer
et al. 1998) was used to reduce the n-gram vectors to 1,000 dimensions. To emphasize important
words, keywords were extracted from the utterances using a cloud-based API (now part of IBM
Watson2) to create a separate keyword vector, which was then reduced to 200 dimensions using
LSA. In this way, each utterance was represented with a 1,200-dimension vector. Customer and
shopkeeper utterance vectorization were performed separately.

The shopkeeper and customer spatial information was vectorized into a vector containing the
participant’s location (7 dimensions), movement departure location (7 dimensions), and movement
arrival location (7 dimensions). Furthermore, the shopkeeper and customer’s joint spatial state,
consisting of spatial formation (3 dimensions) and state target (4 dimensions), was also included.
Thus, customer actions and shopkeeper actions were both 1,228 (m) dimensions.

4.1.4 Action Clustering. Each action was represented using a discrete ID, obtained by action
clustering, for the output of the learners. The goal of action clustering was to group together similar
actions from the human–human dataset to find sets of discrete customer and shopkeeper actions
that commonly occurred during the interactions. The shopkeeper action cluster IDs were used as
outputs for the Appropriateness Learner and the customer action cluster IDs were used as outputs
for the Curiosity Learner.

Actions were clustered into clusters of similar actions by BIRCH clustering (Zhang et al. 1996).
The number of clusters, K, was set to 800. The branching factor was set to 10 and the threshold
was 0.005.

Since the system’s output, a shopkeeper action cluster ID, must dictate the robot’s behavior,
which includes speech, destination location, and spatial formation, a typical action was automati-
cally selected for each shopkeeper action cluster by finding the action that was most similar to all
the other actions in the cluster (i.e., the medoid) using cosine distance. Since complete utterances
with few ASR errors tended to share the most similarities with other utterances in the same clus-
ter, the utterances of typical actions tended to be well formed and easy to understand. We refer to
these as typical utterances. When the system outputs a shopkeeper action cluster, the robot speaks
the typical utterance and moves based on the spatial portion of the typical action.

2https://www.ibm.com/watson/services/natural-language-understanding/.
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Fig. 5. Details of our system, both the Appropriateness Learner and Curiosity Learner is triggered when a
human action (e.g., utterance or silence) is detected. (a) The Appropriateness Learner learns a set of k socially
appropriate robot actions, and for each robot action (b) we query the Curiosity Learner to output a measure
for curiosity; (c) finally, a utility measure is calculated.

The number of clusters, K, was set to be 800. This value was chosen to be larger than in previous
work (Liu et al. 2016; Liu et al. 2017a) to obtain more fine-grained action clusters that account
for more variability in speech. For example, a large number of shopkeeper clusters provides the
shopkeeper with more possible subtle variations of behavior, such as saying, “This camera is five
hundred dollars” versus “Let me tell you about the price of this camera, it’s five hundred dollars.”
Moreover, a large number of customer clusters helps account for individual differences in phrasing,
e.g., “What is the price?” versus “Tell me the price.”

4.2 Learning from Example Interactions

Here, we describe the details of the individual components of the curiosity-based learning system,
which is illustrated in Figure 5.

4.2.1 Appropriateness Learner. First, to learn the social appropriateness of a robot action, we
applied a feed-forward multilayer perceptron neural network, which has the ability to learn a
mapping, based on the relative importance of each input feature, to a discrete class, from examples
in a dataset D. Our training data for the neural network are composed of (h(t ), r̂ (t )) action pairs,
where h(t ) ∈ Rm is the human action input vector and r̂ (t ) ∈ {0, 1}K is a target robot shopkeeper
action, where K is equal to the total number of robot actions obtained from clustering. That is, if
r̂ (t )i = 1, then observation h(t ) maps to robot action i .

Based on the results from previous studies, we can interpret the neural network as learning a
measure of how appropriate each robot action is (Liu et al. 2017a):

Appropriateness = p (r (t )1), . . . , p (r (t )K ). (1)

During online interaction, we want to constrain the robot to a number of possible behaviors that
are socially appropriate for a particular situation. Thus, we only select the top−k most appropriate
robot actions predicted by the neural network, among which the robot can freely explore using
the Curiosity Learner.

4.2.2 Curiosity Learner. We model the curiosity of a robot action as trying to minimize the
variance of the prediction error (Chan et al. 2015), i.e., the robot is curious about those actions for
which it is uncertain how the customer will respond and less curious about actions for which it is
confident it can predict what the customer will do next. Similarly to the Appropriateness Learner, we
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can learn an initial estimation of potential next customer actions by applying a second multilayer
perceptron neural network.

Considering a sequence of alternating actions (h(t ), r (t ),h(t + 1)), the training input for the

neural network is (h(t ), r (t )), and the training target is the discretized value, ĥ(t + 1). The neu-
ral network learns a probability distribution over the set of human actions in the next timestep,
p (h(t + 1)1), . . . , p (h(t + 1)K ), whereK is the total number of discrete human actions. Finally, only
the top−k most likely subsequent customer actions were used.

To measure the uncertainty of the customer’s next action, we can calculate the entropy of the
probability distribution that is output by the neural network (Wang 2008). Previous computational
models have also incorporated such uncertainty-based strategies, generating biases toward actions
or states that have high entropy (Cohn et al. 1996; Rothkopf and Ballard 2010). A high entropy
value means that the robot is unsure what the customer will do as a result of its own action, while
a low entropy value means that the robot is fairly confident of what the customer will do next.
Within this framework, the robot is encouraged to take actions that result in states that are deemed
surprising—i.e., actions for which the robot is unsure what the customer will do next.

Thus, the curiosity measure is the normalized entropy of the probability distribution:

Curiosity =
−∑k

i=1 p
′(h(t + 1)i )ln(p ′(h(t + 1)i )

ln(k )
, (2)

where p ′(h(t + 1)1), . . . , p ′(h(t + 1)k ) is the probability distribution over the top−k most likely
subsequent customer actions, normalized to sum to 1.

4.2.3 Behavior Utility. For each potential robot action, a behavior utility function is evaluated,
which combines the factors of social appropriateness and curiosity:

Utility = (1 − β ) · Appropriateness + β ·Curiosity, (3)

where β is a tuning parameter that is adjustable. A high β biases the robot to be more curious
while a low β biases the robot to be more socially appropriate during interaction.

4.2.4 Action Selector. To select a behavior for a robot, the behavior utility function is evaluated
for each of the potential actions the robot can perform. The action selector then executes the robot
action with the highest utility, which is a discrete action, consisting of a typical utterance and a
target spatial formation.

4.3 Adaptation to Individuals

As the robot continues to interact with a customer, it should come to better understand how the
customer will respond to its actions. Thus, it will tend to be less curious about actions it has taken
previously. To reflect this new observation in the Curiosity Learner, during live interaction, we
can update the weights of the neural network in the Curiosity Learner through backpropagation.
Backpropagation is used to modify the synaptic weights of the internal (hidden) and output layers
of the neural network (Rojas 1996) by trying to minimize the loss between the target and the
predicted value. In this way, the input-output mapping of the neural network can be dynamically
updated to reflect new observations.

To update the weight of the neural network, the newly observed human action is first mapped

to an action cluster, ĥ(t ), using the nearest-neighbor algorithm. Then, this action is used as the
target for backpropagation, with the previous customer action h(t − 1) and robot action r (t − 1) as
inputs. We used the cross-entropy function to compute the loss. To control how quickly the neural
network learns the observed human action, we backpropagate the newly observed interaction data
through the neural network over several epochs (to a maximum of l ) until the cross-entropy loss
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15:10 M. Doering et al.

Fig. 6. Pseudocode for the curiosity-based learning algorithm for robot action selection and online adapta-
tion to the individual customer.

is below a certain threshold, th. This allows the recently observed human action to immediately
become a much more likely prediction for that prompt.

Because the Curiosity Learner network is trained on only a single training example for a limited
number of epochs, the online learning process does not impede the runtime performance. An
analysis of the runtime performance is presented in Section 5.4.3.

The overall process for the curiosity-based learning system is described in the pseudocode in
Figure 6.

4.4 Model Parameters

4.4.1 For Learning from the Human–Human Dataset. To find the ideal parameters for train-
ing the neural networks on the human–human interaction dataset, we iteratively tested differ-
ent parameter values. The parameters were adjusted to improve the Appropriateness Learner’s
shopkeeper action prediction accuracy and the Curiosity Learner’s customer action prediction
accuracy.

The architectures of both neural networks in the Appropriateness Learner and the Curiosity
Learner are the same, consisting of an input layer, followed by three leaky rectified hidden layers,
and a softmax output layer. The input to the Appropriateness Learner is the human action vector
of dimension m and the input to Curiosity Learner consists of both a human and a robot action
vector with total dimension 2m. Each hidden layer consists of 800 neurons.

Both neural networks were trained using momentum-based mini-batch stochastic gradient de-
scent, with a batch size of 128, a learning rate of 0.0005, and a momentum coefficient of 0.9. Normal-
ized initialization, described in Ioffe and Szegedy (2015), was used to initialize the neural network.
The network was trained to minimize the cross-entropy loss for 2,000 epochs between the observed
target action and the predicted action for the entire training set.
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4.4.2 For Online Learning. The Curiosity Learner’s parameters for online learning during in-
teraction were tested in simulation, where a human user was able to choose the actions of the
customer and observe the proposed system’s responses.

We found 0.05 to be a good threshold, th, and 10 to be a good maximum number of iterations,
l , for terminating the iterative backpropagation process. Setting th too high or l too low causes
online learning to halt before the Curiosity Learner learns the customer’s individual differences.
Setting th too low or l too high causes overfitting to the most recently observed customer action,
such that the network predicts that customer action regardless of the robot’s previous action.

For behavior generation, we tested several values for k , the number of possible robot actions,
and found k = 5 constrained the exploration space for curiosity to be within the realm of socially
appropriate behaviors. Increasing k allows for a wider variety of robot behaviors but increases the
rate of socially inappropriate behaviors.

We also tested several β values for the behavior utility function and found 0.9 to be a good
balance for executing behavior that is both socially appropriate and curious. Detailed analysis of
the influence of the parameter beta is provided in the appendix.

5 EVALUATION OF THE CURIOSITY LEARNER

We conducted an evaluation of the Curiosity Learner’s ability to adapt to individual customer’s
behaviors.

There are two learning phases for the Curiosity Learner. The first learning phase is when the
Curiosity Learner (and the Appropriateness Learner) are trained on the human–human dataset
(Section 4.3) – i.e., offline learning. The second phase of learning occurs in real time, i.e., online
learning, when the proposed system interacts with a real human customer (Section 4.4). Recall
that the main task of the Curiosity Learner is to predict the customer’s next action h(t + 1) based
on the current customer and shopkeeper actions h(t ), r (t ). During the offline learning phase, the
Curiosity Learner learns to predict the most frequent customer action that followed those customer
and shopkeeper actions in the training dataset. However, during the second, online, learning phase,
the Curiosity Learner learns to more accurately predict the actions of the individual customer who
is currently interacting with the robot. This is accomplished by training the Curiosity Learner on
the observed individual customer’s actions, such that the probability of predicting the previously
observed actions increases.

The Curiosity Learner’s ability to learn from the customer’s individual behaviors is critical for
generating more varied, interesting interactions. When the Curiosity Learner’s ability to predict
the customer’s behavior in response to certain robot actions improves, the robot’s “curiosity”
drives it to perform other actions, for which the customer’s reaction is less predictable.

Thus, the evaluation described below focuses on the online learning phase. To more thoroughly
evaluate the online learning phase, an additional interaction dataset was created via simulation.
Subsequently, the Curiosity Learner’s customer action prediction accuracy and the curiosity scores
of the simulated robot actions were measured before and after online learning.

5.1 Simulated Interactions

We simulated interactions between a robot shopkeeper and a human customer to create a dataset
for evaluation separate from the human–human dataset (Section 3), since the human–human
dataset was used to train the Curiosity Learner in the first, offline, learning phase (Section 4.5).
Interactions were simulated using a graphical user interface that displayed the customer and shop-
keeper’s locations on a map of the camera shop. A human user was able to control the customer’s
speech by text input and the customer’s location by mouse click. The shopkeeper’s actions (speech
text, spatial state, and state target) were automatically selected in response to the customer’s
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actions by the Appropriateness Learner (Section 4.3) and displayed to the user. Using the simula-
tion tool, 15 interactions were generated by a user playing various types of customers (a profes-
sional photographer, an art student, a frequent family-vacationer, a silent browsing customer, etc.).
Two to three interactions were role played for each customer type. The 15 interactions contained
205 customer–robot action turns in total. The average interaction length was 13.7 turns (s.d. 2.9).

5.2 Simulated Evaluation Setup

The experiment consisted of comparing the Curiosity Learner’s customer action predictions un-
der two experimental conditions. Predictions were made for each of the 205 simulated customer
actions, h(t ), given the context h(t − 1), r (t − 1). The conditions were as follows:

• No Adaptation: The Curiosity Learner predicted the customer’s actions without online

learning.
• With Adaptation: The Curiosity Learner’s predictions of all customer actions h(t ) in an

interaction i were made after sequentially online-learning from each of h(t − 1), r (t − 1) →
h(t ) in interaction i . This condition shows the Curiosity Learner’s capability to learn and
remember the customer’s behaviors over the entire duration of the interaction.

5.3 Evaluation Metrics

5.3.1 Customer Action Prediction Accuracy. To evaluate the effectiveness of online learning, the
customer action prediction accuracy on each of the 205 customer actions was measured in both of
the experimental conditions. To determine whether a predicted customer action h′(t ) matches the
simulated ground-truth customer action, the ground-truth action is first matched to a customer

action cluster ĥ(t ) using the nearest-neighbor classifier, as described in Section 4.3, and if h′(t ) =

ĥ(t ), then it is considered a correct prediction.

Furthermore, we looked at both whether the ground-truth-matching customer action ĥ(t ) was
the Curiosity Learner’s top prediction (“top-one accuracy”) and whether it was among the top five
predictions (“top-five accuracy”).

5.3.2 Average Curiosity Scores. While the customer action prediction accuracy shows how well
the Curiosity Learner learns about individual customers, the curiosity score, which is computed
from the Curiosity Learner’s predictions, has a more direct effect on the robot’s behavior. When
the curiosity score for a shopkeeper action is high, the robot is more likely to take that action.
Furthermore, after observing a customer actionh(t ) in response to a previous robot action r (t − 1),
the curiosity score for r (t − 1) should decrease in the context of actions like h(t − 1), such that if
the customer performs a similar action to h(t − 1) subsequently, the robot will be more likely to
explore a different shopkeeper action. An example of this process is presented in Figure 11.

Average curiosity scores for both experimental conditions were computed over each of the 205
h(t − 1), r (t − 1) action pairs in the simulated dataset. That is, each h(t − 1), r (t − 1) was fed into
the Curiosity Learner in both the no adaptation and with adaptation conditions, and curiosity scores
were computed from the learners’ outputs, in the form of probability distributions over the set of
possible customer actions p (h(t + 1)1), . . . , p (h(t + 1)K ), using Equation (2).

5.4 Evaluation Results

The evaluation’s results are shown in Figures 7 and 8.

5.4.1 Customer Action Prediction Accuracy Improves After Adaptation. The results in Figure 7
show that the Curiosity Learner with adaptation, i.e., the online learning phase—based on individ-
ual customer behavior—was better able to predict the customer’s actions. The Curiosity Learner
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Fig. 7. The Curiosity Learner’s customer action pre-
diction accuracy with and without adaptation to in-
dividual differences.

Fig. 8. Average curiosity scores of each simulated
turn with and without adaptation.

had top-one accuracy of 45% with adaptation and 15% with no adaptation. The customer action
prediction accuracy matters, because when the Curiosity Learner predicts a previously observed
action with high probability, this leads to a low curiosity score for robot actions that might cause
the customer to respond in the same way again. This enables the robot to explore different actions,
resulting in more varied, interesting interactions. For example, this is the case for robot action R3
in the example interaction shown in Figure 11.

To compute the curiosity score, the top-k predictions are used. In our implementation, k was
set to 5. Therefore, it is also useful to evaluate how often the correct customer action is among
the Curiosity Learner’s top five predictions. The Curiosity Learner had top-five accuracy of 76%
with adaptation and 20% with no adaptation. This means that for about 76% of the instances the
Curiosity Learner learned sufficiently to try performing a different, curious action if the robot were
to encounter a similar situation again.

5.4.2 Curiosity Scores Decrease with Adaptation. Figure 8 shows how the average curiosity
scores of the simulated robot actions r (t ) changed as a result of adaptation (with error bars show-
ing the standard error). The average curiosity score without adaptation was 0.55 and dropped to
0.30 with adaptation. This is a consequence of learning the customer’s action h(t + 1), as demon-
strated in Section 5.4.1. When the Curiosity Learner adapts to the customer’s behavior, it becomes
more “confident” in its prediction of the customer action, which is reflected in a less uniform dis-
tribution over the possible customer actions. As a result, the entropy, and thus the curiosity score,
is lower. This yields a lower utility for the action r (t ), allowing the robot to explore other actions
instead.

5.4.3 Runtime Performance. The online learning is a very fast process. Each of the 205 simu-
lated instances of online learning completed in an average of 55.7 ms (s.d. 33.1) when run with a
GeForce GTX 980 Ti graphics card. The runtime performance during the user study, presented in
Section 6, was similar and did not delay the robot’s response time.

In summary, these evaluations demonstrate that the Curiosity Learner is able to effectively learn
an individual customer’s behaviors through interaction. During real time interaction, the Curiosity
Learner’s ability to learn is critically important, since curiosity scores are assigned to robot actions
based on the learner’s output. Thus, adaptation allows the proposed technique to vary its behavior
based on what has been learned about the customer.
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6 USER STUDY

6.1 Conditions

To observe the effect of the proposed techniques during live interaction, we conducted a user study
to compare the two conditions:

• Curious robot: uses both the Appropriateness Learner and the Curiosity Learner for gener-
ating robot behaviors

• Non-curious robot: uses only the Appropriateness Learner.

The experiment used a within-participants design and the order of the conditions was counter-
balanced to avoid ordering effects.

6.2 Hypothesis and Prediction

We made the following hypotheses about the effects of our proposed techniques:

• Driven by curiosity, the curious robot will perform more actions it has not taken before,
mimicking humanlike-ness. Thus, it will be perceived as being more humanlike.

• The curious robot will be able to adapt its behaviors to some individual customers’ differ-
ences, creating opportunities for interactions to develop in diverse ways and resulting in
more interesting interactions.

• The curious robot will exercise curiosity within a set of appropriate actions, thus social

appropriateness should be similar for both the non-curious and the curious robot.
• Providing a more individualized interaction will lead to more enjoyable experiences for the

customer, thus the curious robot will be perceived to have better interactions overall.

6.3 Experiment Setup

6.3.1 Participants. A total of 16 paid participants (10 male and 6 female, average age 34.9, s.d.
9.0) were recruited for this experiment. All of them were fluent English speakers and had no pre-
vious familiarity with the robot.

6.3.2 Environment. The experiment was conducted in the same camera shop setting used for
the human–human data collection, with three cameras displayed in an 8m × 11m experiment
space. The same sensor network was used for tracking, and the participants communicated with
the robot using a handheld smartphone for speech recognition.

6.3.3 Robot Platform. For this experiment, we used a humanoid robot with a 3-degree-of-
freedom (DOF) head, two 4-DOF arms, and a wheeled base, capable of moving at a speed of 0.7m/s.
We implemented the proposed techniques in the robot, enabling it to autonomously generate be-
havior based on inputs from the sensor network and speech recognition results. The dynamic
window approach (DWA) was used to avoid obstacles (Fox et al. 1997), and the speech synthesis
system described in Kawai et al. (2004) was used to generate utterances.

To make the interactions more natural, idling behavior was implemented in the robot for both
conditions, in which the robot makes small arm and head movements while idling, speaking, and
moving (Shi et al. 2010). Automatic head-tracking of the robot’s interaction partner was also im-
plemented, and the robot followed the customer with its gaze during all interactions.

6.3.4 Procedure. Since the goal of this study was to evaluate a curiosity-driven robot, we asked
the participants to role-play as a customer and to observe and interact with the robot with the
purpose of evaluating the quality of the interaction. Each participant interacted with both robots.
To test the robot, we suggested the participants could ask about the same camera features twice,
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Fig. 9. User study questionnaire responses.

remain silent by playing with the camera, or acknowledge the robot with some simple utterances
(e.g., “ok”). Participants freely chose when to end each interaction, by thanking the robot and
leaving the shop.

As in our human–human data collection, before the start of the experiment, we explained to the
participants what a typical interaction was like, asked them to become familiar with the smart-
phone interface, and confirmed their understanding of the instructions.

After each participant had interacted in one condition, a questionnaire was administered, and
the procedure was repeated with the remaining condition (curious or non-curious). Half the par-
ticipants interacted with the curious robot first then the non-curious robot, and the other half
interacted in the opposite order.

6.4 Measurement

After each condition, participants filled out a written questionnaire, rating the following items on
a 1–7 scale (1 being very negative and 7 being very positive):

• How humanlike did the robot’s behavior seem to you, considering the repetitiveness and
diversity of its behaviors?

• How interesting was your interaction with the robot?
• Was the robot’s behavior socially appropriate for its role as a shopkeeper?
• Overall evaluation

After the questionnaire was completed, the participants were briefly interviewed.

6.5 Results

6.5.1 Questionnaire Results. To compare each rating between the curious and the non-curious
robot, we conducted a paired t-test for each of the four questions, the results of which are shown
in Figure 9.

We verified that all of our hypotheses were supported, as the analysis found significant dif-
ferences between the conditions for ratings: Humanlike (t (15) = 3.748, p = 0.002), Interesting
(t (15) = 3.050, p = 0.008), and Overall evaluation (t (15) = 3.896, p = 0.001). We did not find a sig-
nificant difference for Socially appropriate (t (15) = 1.695, p = 0.111).

Thus, the results support our predictions: The curious robot was perceived to be more humanlike

with respect to repetitiveness and diversity of behavior and more interesting than the non-curious
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Fig. 10. Frequency of robot utterance types. The curious robot asks significantly more questions than the
non-curious robot.

robot; there was no significant difference between the perceived social appropriateness between
two robots; and the curious robot was rated to have a better overall interaction than the non-curious
robot.

6.5.2 The Curious Robot Asks More Questions. We conducted an analysis of how many ques-
tions occurred in each condition of the user study (Figure 10). Each robot action in the user study
logs from 10 of the experiment sessions (only 10 of 16 participants were analyzed due to failures
in recording in the other 6 trials) was labeled by an expert annotator as either greeting, closing,

inform, question, response, or null (actions where the robot remained silent—e.g., waiting at the
service counter or silently standing by the customer). Then, the mean number of occurrences per
interaction were computed for each condition and a t-test was performed.

The only utterance type to have a statistically significant difference between the two conditions
was question. In the non-curious condition, the robot asked the customer an average of 0.6
questions per interaction. In the curious condition, the robot asked the customer an average of
2.4 questions per interaction. Thus, the curious robot asked four times as many questions as the
non-curious robot.

Some of the questions asked by the curious robot were, “What sort of pictures do you like to
take?,” “What sort of camera did you have before?,” and “What kind of camera are you looking
for?” This may be one reason that participants observed more humanlike diversity of behavior in
the curious robot and why they found those interactions to be more interesting.

6.5.3 Qualitative Observations. During the experiment we observed that the curious robot gen-
erated behaviors with a wider variety of actions, which improved the quality of the interactions
in these situations: (1) when the customer repeatedly responded to the robot with backchannels,
the robot provided a variety of information rather than repeating itself; (2) when the customer
was silent, the robot attempted various behaviors rather than repeating the same behavior; and
(3) when the customer repeated the same question more than once, the robot was able to respond
with different phrasings. Considering the third case, in a real interaction a customer may repeat
himself because he did not understand what the robot said the first time. In this case, it is helpful
for the robot to try rephrasing its response.

The curious robot often performed several types of behaviors: (1) rephrasing a response; (2) elab-
orating on basic responses by providing additional information; (3) performing proactive behav-
iors, such as making camera recommendations or guiding the customer to different cameras; and
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(4) asking the customers questions about their preferences. For these reasons, the curious robot
appeared to be more engaging to the customers than the non-curious robot. Some participants
stated that the curious robot had more salesmanlike qualities than the non-curious robot, and
many participants preferred interacting with the curious robot.

We found that the curious robot spoke more unique utterances than the non-curious robot. On
average, the curious robot spoke 30.6 (s.d. 5.5) unique utterances, while the non-curious robot
only spoke 21.3 (s.d. 9.0) unique utterances (t (9) = 3.274, p = .010). To see if there was a differ-
ence in customer behavior, we analyzed the total number of utterances spoken by each customer.
Although not significant, (t(9) = 1.336, p = .214), the customers spoke a slightly higher average
of 32.4 utterances (s.d. 13.3) to the curious robot, compared with 27.7 utterances (s.d. 7.3) to the
non-curious robot.

6.6 Case Study

Using the proposed techniques, we observed that the robot’s behaviors appeared to be driven by
curiosity. Here we present two examples.

6.6.1 Example 1. Figure 11 illustrates an example where the curious robot was able to contin-
uously adapt to the customer’s responses during live interaction (i.e., exploring different actions
given the same customer input), rather than always using the same “default” interaction style
learned from the off-line training.

At first, the customer is preoccupied with the Canon camera and yields her turn by remain-
ing silent for a period of time. Once the robot detects a yield action (highlighted in blue), it
queries the Appropriateness Learner to output the top fiv most appropriate robot actions, with an
appropriateness value of around 0.05 for each of the five actions. For each robot action, the Cu-

riosity Learner predicts a probability distribution for the top five subsequent customer actions, for
which the curiosity value is computed. Here, Action R1 has the highest curiosity value of 0.567,
yielding a total utility value of 0.205. The robot thus executes Action R1 and asks, “Can I ask what
sort of pictures you take?”

The customer answers that she is looking to take pictures of family and friends, and this ut-
terance is matched to the nearest customer action cluster. Once the robot observes this customer
action, it updates the weights of the neural network in the Curiosity Learner. The robot then talks
about the Canon camera, after which the customer ignores the robot and continues to remain
silent (highlighted in brown). Given the same input, the Appropriateness Learner outputs the same
five possible robot actions as before, but because the Curiosity Learner has been updated to reflect
the customer’s behavior, the customer action probabilities have changed, and the curiosity value
for Action R1 has decreased. As a result, the robot decides to take Action R3, which now has the
highest utility value among the possible actions, with a value of 0.301. The robot then introduces
additional features of the Canon camera, “Full frame it’s same size as a piece of thirty-five-mil film
that’s the standard for a top-end camera.”

6.6.2 Example 2. Figure 12 illustrates an example of how the curious robot adapts to engaged
and unengaged customers. Both customers perform the same action, but because the Curiosity
Learner has adapted based on each customer’s previous behaviors, it is able to provide differing
actions, tailored to their individual differences.

The left side of Figure 12 shows the interaction history of an engaged customer, who is asking
the robot many questions. In customer action C6, the engaged customer responds to the robot
with a backchannel, “Okay.” Based on the customer’s previous actions, the Curiosity Learner has
learned that he is likely to continue the conversation with any of a number of proactive actions.
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Fig. 11. An example interaction of the curiosity-driven robot. The columns (e.g., Uti, App, and Cur) are the
respective utility, appropriateness, and curiosity values. The probability distribution of the next customer
action (e.g., Prob C2), h(t + 1) is also shown. For brevity, the predicted customer actions are only shown for
the relevant robot actions and only two of the five possible robot actions are shown for C3.

So, the robot responds to the backchannel phrase in an engaged way, “You might like to pick it up
and try taking a few shots.”

In contrast, the right side of Figure 12 shows the interaction history of an unengaged customer.
In this interaction the robot tries offering information or asking questions, but is answered with
short, disinterested responses, e.g., “Not sure” and “I see,” or is ignored by the customer. Finally,
when the customer responds to the robot’s offered information with “Okay,” the Curiosity Learner,
having learned that the customer is likely to give some short response or to remain silent, assigns
the highest curiosity score, 0.141, to the action “If you have any other question, please let me know”
with the robot returning to the service counter. This action is predicted to possibly result in the
customer going to exoplore the other cameras in the shop, so in that way it is the most curious
action. Conversely, had the robot selected the same action as for the engaged customer, it would
almost certainly have been met by silence from the customer.
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7 DISCUSSION

7.1 Curiosity and Individual Differences

We found that the “curious” robot was able to adapt its behaviors to some individual customer
differences (e.g., interested versus uninterested customers) rather than always using the same de-
fault behaviors it learned from the off-line training. For example, when an uninterested customer
continued to ignore the curious robot for some time, the robot would often go back to the service
counter, saying “I will be at the service counter if you need any more help.” While this was not
the most proactive, salesmanlike behavior, it had the highest curiosity value for that particular
situation, due to the fact that the robot had “lost curiosity” (i.e., the entropy-based curiosity score
decreased) about previous actions (e.g., presenting features), since those actions did not elicit any
unanticipated customer responses. In contrast, when the curious robot was interacting with an
interested customer who had many questions, the robot would usually continue answering the
customer’s questions and would not leave the customer alone. Given the same situation, the non-
curious robot would simply continue to respond with the same “default” behavior regardless of
whether the customer was interested or uninterested, potentially resulting in a less ideal interac-
tion than if it had adapted to the individual’s needs.

7.2 Perception of Curiosity

The “curious” robot can only exhibit behaviors that are perceived as curious if such behaviors
occurred in the human–human dataset, from which the robot learns. The camera shop interaction
scenario, on which we demonstrated our proposed system, contains many curious behaviors, since
the shopkeeper tried to learn about the customers. For example, questions are one type of behavior
performed by the human shopkeeper that the robot learned to imitate. When the robot asks the
customer a question, it is naturally perceived as being curious. If, however, the proposed system
were to be applied to a scenario in which the target human is not curious, then it is unlikely that
the robot would perform actions that exhibit curiosity.

However, it is possible that a robot trained on a dataset without curious behaviors can still
learn about the humans it interacts with. This is because, at a fundamental level, the mechanism
that drives the robot’s behaviors will always result in robot actions that lead to uncertain human
responses, such that the robot can learn more about the human. For example, sometimes the shop-
keeper remaining silent and letting the customer take initiative creates a greater opportunity for
the shopkeeper to learn about the customer, even though this might seem like a passive, uninter-
ested behavior. Thus, there may be some benefit to applying the curious system to training datasets
regardless of the quantity of curious behaviors they contain.

In our user study, we naturally wondered whether the attribute of “curiosity” of our robot was
directly perceivable by the participants. Our interviews with the participants showed that some did
perceive “curiosity” in the robot, while other participants could not tell the difference. Indeed, one
common reason for the perception of “curiosity” in the robot was that the robot asked questions
(e.g., “what sort of pictures do you like to take?”), which is one quantitative aspect of curiosity
(Langevin 1971; Sinha et al. 2017). Our Curiosity Learner occasionally selects a robot utterance
that is a question, and questions often lead to more variety in customer behavior. Note that our
system does not have semantic understanding of which utterances constitute questions. For future
work, it would be interesting to incorporate semantic understanding to better model curiosity for
a conversational robot.

7.3 Generalizability

In this study, participants were instructed to focus only on camera-related conversation, which
is not fully natural. It is uncertain how well the proposed techniques could generalize to more
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natural conversation with a wider variety of topics. Currently, one limitation of our approach is
that the robot cannot explicitly act on learned information, e.g., for the purpose of goal-directed
behavior. However, we anticipate that additional mechanisms, such as incorporation of time series
data, would enable a curious robot to exploit information it had learned about the customer earlier
in the interaction (e.g., “Are you planning to travel soon?”) and pursue specific goals (e.g., “This
camera is great for travel”).

In principle, we expect that the proposed approach can be applied to any domain characterized
by repetitive, formulaic actions but also containing opportunities for individualized interaction
(e.g., a waiter, receptionist, or travel agent). While the simple Appropriateness Learner can learn
the repetitive behaviors, the Curiosity Learner can discover which behaviors are likely to lead to
individual variation in customer responses. By guiding the interaction toward these behaviors,
the curious robot creates opportunities for interactions to develop in diverse ways, opening up
paths in the dialog that have the potential to branch out according to an individual’s interests or
needs. For example, a conversation with a curious robot that generates the curious action “What
kind of pictures do you like to take?” may lead to topics relating to the customer’s hobbies and
end with the shopkeeper recommending a camera. In contrast, the non-curious robot would never
have even asked the question in the first place.

8 CONCLUSION

In this work, we have presented a curiosity-based system for generating interactive behavior for a
social robot. To the best of our knowledge, this study is the first to apply curiosity-based learning to
this domain and to drive adaptation and individualization of dialogue. Our curious robot initially
learns socially appropriate behavior by imitation from offline data and then continues to learn
online, during live interaction with humans. The system adapts to customers’ reactions in real
time by choosing its own actions to explore and satisfy its curiosity about the customers’ individual
differences. In a user study we found that participants rated the curious robot to be significantly
more humanlike with respect to repetitiveness and diversity of behavior, interesting, and better
overall in comparison to a non-curious robot. The proposed techniques contribute a step toward
advancement in the area of intrinsic motivation and curiosity-based learning for social robots.
In future, it would be interesting to explore the application of the proposed technique on larger
datasets and to other scenarios.

A APPENDIX

A.1 Analysis of the Curiosity Parameter

The curiosity parameter β is intended to control how curious the robot is when choosing an action.
Specifically, it determines how much weight the robot places on the curiosity scores and social ap-
propriateness scores of possible robot actions. We analyzed the effect of the curiosity parameter’s
value on the robot’s behavior by comparing the robot’s output action before and after adaptation
at various curiosity parameter values.

A.1.1 Exploration Rate Metric. To measure the effect of the curiosity parameter value on the
robot’s behavior, we define exploration rate as the percent of instances where the robot’s action
in response to h(t ) without adaptation, rno adaptation (t ), is different from its response to h(t ) after
adaptation, rno adaptation (t ). Formally,

exploration rate =

∑N
n=1

∑numturnsn

t=1 (rno adaptation (n, t ) � rwith adaptation (n, t ))
∑N

n=1

∑numturnsn

t=1 1
, (4)
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where N is the number of simulated interactions (N = 15), and rno adaptation (n, t ) and
rwith adaptation (n, t ) are the robot responses to customer action h(t ) at timestep t in interaction n.
The no adaptation system used the Curiosity Learner before learning individual customer behav-
iors, and the with adaptation system used the Curiosity System that had learned about individual
customer behaviors (as described in Section 5.2).

Thus, a high exploration rate means the robot changes its behavior more in response to learning
about individual customer behaviors.

A.1.2 Effect of Curiosity Parameter on Exploration Rate. The exploration rate is the most direct
method of measuring the effect of learning individual customer behaviors on the robot’s behavior.
The results in Figure 13 show that the effect of adaptation on the robot’s actions increases as the
curiosity parameter β increases. When β = 0, adaptation has no effect on the robot’s behavior,
because in this case the system does not use the output of the Curiosity Learner. But, when β =
1.0 the robot explores a different action in 77% of the instances after adaptation than it would
have performed before adaptation. This demonstrates the effectiveness of the Curiosity Learner in
adapting the robot’s behaviors to individual customer behaviors.

Fig. 13. The effect of the curiosity parameter on how frequently the robot changes is response to customer
actions after adaptation.
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