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Abstract—Laser range finders are a non-invasive tool which 

can be used for anonymously tracking the motion of people and 

robots in real-world environments with high accuracy. Based on 

a commercial system we have developed, this paper addresses 

two practical issues of using networks of portable laser range 

finders in field environments. We first describe a technique for 

automated calibration of sensor positions and orientations, by 

using velocity-based matching of observed human trajectories to 

define constraints between the sensors. We then propose a 

mechanism for detecting when a sensor has been moved out of 

alignment, which can be used to alert an operator of the 

condition and automatically exclude erroneous data from 

tracking calculations. 

After describing our techniques for solving these problems, 

we demonstrate the effectiveness of our calibration and error 

detection systems in live trials with our real-time system, as well 

as offline tests based on scan data recorded from field trials. 

I. INTRODUCTION 

ASER range finders (LRF’s) have become an 

indispensable tool in the robotics community, the core 

component of many localization, mapping, and obstacle 

avoidance systems. A less common but growing application 

field for laser range finders is the tracking of human motion, 

particularly through public or commercial spaces. 

Laser range finders offer many advantages over other types 

of sensors. Their non-invasiveness is a great advantage; 

installing hardware such as floor pressure sensors can be 

disruptive to public and commercial spaces, and requiring 

people to carry tags or handheld devices often requires active 

intervention in the social system being studied. Other 

advantages include high measurement accuracy and simplicity 

of data processing when compared with visual tracking. 

Additionally, the fact that LRF-based trackers output only 

anonymous range values enables analysis of the social use of 

spaces while putting security advocates at ease to some 

degree. While these benefits must be balanced against the cost 

of the sensors, they remain a promising tool for analyzing 

human motion in high-traffic public spaces. 
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Fig. 1. Solid colored lines show human trajectories seen by each sensor 

before calibration (top) and after calibration (bottom) using 30 seconds of 

trajectory data. Background scans are shown in gray, for reference only; no 

scan matching was performed. 

 

These sensors have been used to track people in order to 

study human motion [1]-[4] and to enable autonomous robot 

operation in populated environments [5]-[7]. 

Our laboratory has developed a human tracking system 

based on a stationary network of portable laser range finders. 

This system is now a commercial product, and it has been used 

by a variety of research labs and corporations in market 

studies and field trials. It has been used to analyze the use of 

social spaces, to make predictions about human motion [8], to 

support robot localization [9], to locate specific individuals 

[10], and to enable robots to approach or avoid people [11]. 

To provide reliable data for these tasks, precise knowledge 

of the positions and orientations of the sensors is critical. In 

this paper we present techniques for automatic calibration of 

sensor positions (Fig. 1) and fast detection of sensors which 

have been moved out of alignment. 

The techniques presented in this paper have been tested 

with our own system. Other tracking systems may differ in 

various ways, such as the use of leg-height sensors as opposed 

to the torso-height sensors we use, but the solutions proposed 

in this paper should be generalizable to any tracking system 

which depends on scan registration between multiple 

range-based sensors. 
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Fig. 2. Operational environment for our field trials. Six laser range finders 

monitored the central area, where robots approached customers and offered 

directions and recommendations. 

II. BACKGROUND AND REQUIREMENTS 

The calibration and error detection problems addressed in 

this paper are motivated by our field experiences with a human 

tracking system in the field. To provide context for this 

discussion, we will briefly describe the system used in our 

field trials at Universal CityWalk Osaka, a shopping area 

outside of Universal Studios Japan. 

A. System Overview 

In the environment shown in Fig. 2, we placed six SICK 

LMS-200 laser range finders around the perimeter of an area 

roughly 20 m long by 5 m wide. They were set to a detection 

range of 80 m with a nominal precision of 1cm, each scanning 

an angular area of 180˚ at a resolution of 0.5˚, providing 

readings of 361 data points every 26 ms. 

The laser range finders were mounted 85 cm from the 

ground, to see over obstacles such as benches and luggage. 

This height was also chosen to enable robust detection of 

people at long distances, when scan beams are spaced too far 

apart to reliably detect legs. 

The sensors were housed in heavy steel cases on vertical 

stands, as shown in Fig. 3. This rigidly fixed the height and tilt 

of the sensors, but the stands themselves were movable. The 

sensor positions were thus constrained to a 2D plane parallel 

to the floor. 

All LRF’s were connected to a single Linux PC for data 

acquisition. Raw data was forwarded over a wired LAN to a 

quad-core Windows XP machine with 4GB of RAM for 

tracking computations.  

The algorithm we use for detecting and tracking humans is 

described in [12]. In this algorithm, we use simple background 

subtraction and segmentation (described in Sec. IV-A and 

IV-B) to identify human-sized detections and initialize 

particle filters at those points. 

Individual particle filters are used to track each person. The 

likelihood model used by the particle filters integrates edge 

information and occlusion information (whether or not a point 

is observed to be empty) from all LRF’s. 

 

 
Fig. 3. Mounting stands for laser range finders in the field environment. 

B. Calibration Requirements 

In order to track human positions, our system combines 

range data from several independent laser range finders. For 

accurate registration of the scan data, it is necessary to have 

good estimates of the relative positions and orientations of the 

sensors. Even small errors in these estimates can easily lead to 

inaccurate tracking and systemic false and missed detections. 

Our sensors were deployed every morning and retrieved 

every night. Thus, their positions varied slightly from day to 

day, and recalibration was necessary each morning. Sensor 

calibration was a slow, manual process which sometimes 

required placing objects in the environment for reference. 

Calibration accuracy was highly dependent upon people’s 

individual abilities, and it was difficult to do in the middle of 

the day with many people passing through the tracking area. 

To address this problem, the first technique we present in 

this paper is a method for performing this calibration process 

in an automated, consistent way without disrupting the natural 

flow of pedestrian traffic. 

For our typical deployments with sensors spaced 5-10 

meters apart, the system seemed to perform well when the 

lateral position errors of the sensors were within 10 cm, and 

when the angular errors were within around 1˚. These are only 

approximate figures, but they provide an order-of-magnitude 

guideline for calibration accuracy requirements. 

C. Error Detection Requirements 

In our field trial, the laser range finders were often moved 

out of alignment by children playing with the sensors, 

shopkeepers rearranging store displays, and delivery carts 

being pushed into the sensor stands.  

In such cases, the sensor continues to send tracking data 

that is misaligned with the other sensors as well as its own 

background scan, causing positioning errors and false human 

detections.  

We were often alerted to these situations only after our 

robots began showing erratic behavior, such as approaching 

nonexistent people. By the time the error had been noticed, 

identified, and corrected, the system had been generating 

unreliable data for several minutes. Such errors should be 

detected immediately, to protect the integrity of the tracking 

calculations.  

We propose a technique in this paper which can detect a 
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sensor misalignment within the time span of a single scan 

frame, immediately remove that sensor from the tracking 

calculations, and alert an operator about the situation. 

III. RELATED WORK 

There are many related techniques related to sensor 

position estimation in existing literature. A survey and 

taxonomy of techniques and available technologies for sensor 

localization is provided in [13]. Regarding LRF position 

calibration in particular, there is a substantial body of related 

work regarding SLAM and robot localization. 

A. Scan-matching techniques 

One of the most common techniques by which LRF’s are 

localized is by scan-matching. A number of scan-matching 

techniques exist, including Iterative Closest Point (ICP) [14], 

Polar Scan Matching (PSM) [15], and other techniques [16], 

[17], [18]. In particular, the work of Biber and Straßer [19] 

regarding n-scan matching appears closely related to our 

problem, as we need to register several scans from different 

angles. However, their technique still requires an initial 

estimate of the relative sensor positions, e.g. using a mobile 

robot’s odometry. 

Though these techniques are related to our problem, there 

are a number of reasons why we chose not to implement a 

scan-matching approach. 

1) Irresolvable ambiguities 

First, ambiguities and symmetries in the environment may 

lead to false matches between scans. Techniques such as 

Monte-Carlo Localization [20] and SLAM often address this 

problem by resolving ambiguities as the robot moves to new 

locations where unique features are visible. As our system 

uses stationary sensors, resolving ambiguities by moving the 

sensor is not possible. 

2) Lack of scan features in open spaces 

Our sensors often operate in spaces larger than the LRF’s 

maximum detection range. In this case there are no walls or 

features that can be used for scan matching, and the only 

shared information will be the scan data of people walking 

through the open space. 

3) Minimal scan overlap between sensors 

A third problem is that our sensors are located around the 

perimeter of the space to be monitored, so sensors are often 

facing towards each other. Even when their coverage areas 

overlap, there may be little or no overlap in the features 

observed in their scan data. For example, when a person walks 

through the space, the sensors will see opposite sides of the 

person, so direct scan matching is not possible. 

4) Non-level scan planes 

Floors and sensor stands are often not perfectly level. If the 

scan planes of the LRF’s are not level, distant objects such as 

walls tend to appear further from the sensor than they really 

are. This effect increases over distance, so sensors should be 

calibrated using data at the average distance of the people to 

be tracked. 

B. Landmark-based techniques 

Another family of techniques often used for sensor 

localization utilizes natural or artificial landmarks in the 

environment to triangulate the positions of sensors.  

A thorough analysis of multi-sensor localization problems 

and proposes techniques for qualitative localization which 

could be applied to LRF’s is presented in [21], but the main 

focus is on localization and tracking with omnidirectional 

cameras.  

Other research has focused on localizing sensor networks 

based on distances and connectivity between the nodes, where 

the sensors themselves are landmarks [22]. 

We often performed manual landmark-based localization 

by eye in our field trials, placing poles in the environment in 

the mornings before customers arrive. However, the technique 

presented here uses pedestrians in the environment as 

landmarks, as it is less invasive to the social environment 

under observation. In related work, pedestrians have been 

used for calibration of camera systems in [23], [24]. 

By correlating the velocity histories of each observed 

person, we are able to disambiguate human observations and 

associate them between sensors with no a priori knowledge of 

the relative sensor positions. 

C. Error Detection 

The authors are not aware of any other attempt to address 

this particular error detection problem in the literature. This is 

unsurprising, as it is not an issue for laser range finders which 

are permanently fixed in place, nor is it a significant problem 

for movable sensors used for short-term trials or in controlled 

environments. However, due to the convenience of portable 

sensor networks, we anticipate an increase in the number of 

sensor networks like ours as LRF’s become more affordable. 

IV. SENSOR CALIBRATION 

Our sensor calibration technique consists of six steps as 

follows: We first build a background scan for each sensor 

(Sec. IV-A) and use a segmentation technique to identify 

likely pedestrian observations in each sensor’s scan data (Sec. 

IV-B). We then link the human observations into trajectories 

as the pedestrians move over time (Sec. IV-C), and we use 

their velocity histories to identify when two sensors are 

observing the same person (Sec. IV-D). When we have 

identified joint observations between two sensors, we use 

them to triangulate geometrical constraints between the sensor 

positions (Sec. IV-E). Finally, we resolve these constraints 

across the sensor network to determine the relative positions 

of all sensors (Sec. IV-F). 

A. Build a background scan for each sensor 

A simple background subtraction and segmenting method is 

used to identify human positions, although machine learning 

techniques could possibly be applied as well [25]. 
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Fig. 4. Velocity profiles of detected trajectories over time. A reference 

trajectory (black) from one sensor is compared with trajectories from a 

second sensor. The dashed line shows the best-match trajectory from the 

second sensor. 

 

 
Fig. 5: Average absolute speed difference computed between the reference 

trajectory and all other trajectories shown in Fig. 4. Comparison trajectories 

are shown along the x-axis. 

 

A background scan is first built to model the fixed parts of 

the environment. Over several scans, a set of observed 

distances are collected for each scan angle, and the most 

frequently observed distances over time are used to build the 

background model. This technique allows us to filter out 

moving objects like people walking through the area. 

B. Extract human positions from scan data 

Each new data scan is then segmented to extract human 

positions. A median filter is used to remove outliers and 

smooth the scan data, and then the background scan is 

subtracted from the data scan, leaving only foreground points. 

Continuous segments of foreground points between 30 cm 

and 80 cm in width are then extracted. Depth discontinuities of 

more than 30 cm are considered as segment boundaries. 

Partial occlusions are also considered by artificially extending 

short segments which end behind observed segment. 

Using an elliptical shape model (major axis=55cm, minor 

axis=30cm), an estimate of the body center position is 

determined based on the visible body width. This step outputs 

a list of these human positions in polar coordinates, in the 

sensor’s local coordinate system. 

 
 

Fig. 6. A single shared observation (O) does not uniquely define the relative 

locations of two sensors. Adding a second shared observation (P) can 

eliminate this ambiguity. 

C. Generate trajectories for each sensor 

At each time step, each of the new human positions is 

associated, if possible, with a previously observed position.  

For each human position in the new dataset, distances are 

computed to each observation in the previous time step. If a 

previous observation is the closest match to a new observation 

and within a threshold distance (50 cm) of that observation, 

we consider them to be a part of the same trajectory. 

D. Associate trajectories between sensors 

In order to associate the trajectories between sensors, we 

compute their velocities over time. To filter the effect of 

sensor noise and shape irregularities, net velocity is calculated 

for each trajectory over intervals of 50 time steps. 

Next, for each pair of sensors we iterate through all detected 

trajectories. Each trajectory detected by the first sensor is 

taken in turn as a “reference trajectory” and compared with 

every trajectory detected during that time step by the second 

sensor. 

To identify associations between trajectories, the mean 

error between their velocities is calculated over an interval of 

500 time steps. If the mean error exceeds a threshold (we used 

100 mm/s), the possible association is discarded. Trajectories 

with velocities near zero are also removed from the list. 

Of the remaining trajectories, if a unique match is found 

between trajectories observed by two sensors, the association 

between those trajectories is recorded in a table. 

Fig. 4 shows the velocity history for a reference trajectory 

detected by one sensor, compared with a set of seven 

trajectories detected by a second sensor for the same time 

period. Fig. 5 shows the mean speed difference between the 

reference trajectory and the comparison trajectories over a 

time window of 500 time steps. Only one trajectory from the 

second sensor is within a threshold speed difference of 100 

mm/s from the reference trajectory, so it is selected as a match. 

E. Triangulate constraints for sensor positions 

Every 20 time steps, shared observations are recorded from 

the current positions of each set of associated trajectory pairs. 

For two sensors A and B with orientation angles θA and θB, a 

shared observation O consists of distances dAO and dBO and 

relative angles θAO and θBO. A table of all shared observations 

is stored for each sensor pair. 
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Constraints between pairs of sensors are then triangulated 

from the shared observations tables. As Fig. 6 shows, a single 

observation is not sufficient for fixing the relative sensor 

positions. Since only the sensor-relative distance and angle 

are known, at least two shared observations are required. For a 

pair of sensors (i, j), a constraint containing the distance dij 

and relative directions θij and θji between them can be 

computed from two shared observations.  

To generate constraints using new data, every new shared 

observation is paired with a second observation randomly 

sampled from the shared observation table.  

Next, a Kalman filter is used to maintain an estimate of the 

actual constraint between each pair of sensors over time.  To 

achieve this, each new constraint (dij,θij) generated from the 

shared observations is converted to a Cartesian offset zij in 

sensor-relative coordinates, as in Eq. 1. 











ijij

ijij

ij d

d
z





sin

cos
  (1) 

Using the latest measurements, the mean Cartesian offset 

ijx̂  and its variance 
2

x̂  are computed iteratively using Eq. 

2-4. The measurement variance
2

z  is assumed to be constant, 

and the mean and variance from the previous step are 

represented by 


ijx
 
and 

2
x

 . K represents the Kalman gain. 

22

2








xz

xK



  (2) 

   ijijijij xzKxx̂  (3) 

  22

ˆ 1 
xx K   (4) 

 

This procedure is repeated for each sensor pair, and the 

resultant offset estimates are converted to distance constraint 

ijd and relative angle constraint 
rel

ij  for each pair of sensors. 

F. Resolve constraints 

To resolve this set of constraints over the entire set of 

sensors, we begin with a rough estimate of all sensor positions, 

and then refine those estimates using an iterative relaxation of 

constraints.  

1) Initial position estimation 

These constraint estimates are sorted by confidence, that is, 

in order of increasing variance. The highest-confidence sensor 

pair is chosen as the base sensor pair from which to estimate 

the other positions. We then iterate through the list and place 

subsequent sensors in relation to these base sensors in order of 

confidence. 

 

2) Relaxation algorithm 

The sensor position estimates are then refined, using an 

iterative relaxation algorithm. The algorithm and a proof of 

convergence are described in detail in [26]. In this algorithm, 

position estimates )ˆ,ˆ( jiji yx are generated for each sensor i, 

relative to each neighboring sensor j located at position (xj, yj), 

according to Eq. 5. For these calculations, we use the 

estimated sensor angles to compute the angle offsets of the 

constraints in absolute coordinates:
rel

jijji   .  

   jijijjijijijji dyydxx  sinˆcosˆ   (5) 

Next, the variance vji of each position estimate is computed 

as the sum of the variance vj of the neighbor sensor’s position 

and the variance uji of the constraint estimate between the two 

sensors, as shown in Eq. 6. 

jijji uvv   (6) 

Combining these position estimates, a new sensor position 

estimate (xi, yi) and its variance vi are computed, according to 

Eq. 7. Here Ni represents the set of all sensors other than i. 
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The angles of all sensors are then adjusted to minimize the 

average error between constraint angles and estimated sensor 

positions, using Eq. 8.  
































 





iNj ij

ijrel

ijii
xx

yy
1tan)(minarg   (8) 

This procedure can then be repeated until an arbitrary 

stopping point. In our experience the system tends to be 

sufficiently converged after three iterations. 

G. Performance Evaluation 

We tested the real-time performance of our calibration 

mechanism with a human tracking system in our lab. The 

sensor network used in these tests consisted of three SICK 

LMS-200 laser range finders covering an area roughly 6m by 

4m, as shown in Fig. 7. Our tracking system is used in a variety 

of large and small environments, and we believe this is a 

reasonable size for the tracking coverage area in a room-sized 

indoor space. 

 

 
Fig. 7. Layout of sensors in performance evaluation space. 
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Fig. 8. Convergence of positional error (left) and angular error (right) over 

time, averaged over five trials. Error bars show standard error. 

 

Before the evaluation, we performed calibration by hand to 

determine a ground truth for the sensor positions. One person 

was then instructed to casually walk a random path around the 

room while we calibrated the sensors. Five calibration trials 

were performed, with each trial lasting 30 seconds. Sensor 

position estimates were cleared between trials. 

During calibration, data was collected for an initial burn-in 

period of 200 time steps (5.4 s), and then the sensor positions 

were estimated every 50 time steps (1.3 s) after that. Positional 

error and angular error for each pair of sensors were computed 

by comparing the distances and angles between the estimated 

sensor positions with the ground-truth values. These errors 

were then averaged across all sensor pairs to estimate overall 

calibration accuracy. Fig. 8 shows positional and angular error 

results averaged over all five trials. 

These results show that within 10 seconds, our technique 

was able to estimate the sensor positions within 6 cm and 

orientations within 1˚ of accuracy. We consider this to be 

sufficient accuracy for our tracking systems in the field. 

V. ERROR DETECTION 

A. Error Detection Technique 

When a sensor is physically moved during tracking, its 

detections of human positions are offset from those of other 

sensors, and its current field of view is also offset from its 

background scan. However, using only the sensor’s immediate 

scan and background scan data, it is difficult to detect such 

misalignments.  

We propose to use the human positions determined by the 

tracking algorithm at the previous time step to approximate 

the locations of the humans in the current scan. By masking 

out the scan lines which intersect these positions, we can 

isolate the portion of the current scan which should coincide 

with the background scan, as illustrated in Fig. 9-11.  

Specifically, we have a set of N data points for each sensor, 

with values di (1 ≤ i ≤ N), represented in Fig. 9-10 by the solid 

lines, and a set of N background points bi (1 ≤ i ≤ N), 

represented in Fig. 9-10 by the dashed lines. We also define a 

mask M to represent the set of all scan indices which intersect 

a human currently being tracked. The range of indices 

included in M is represented by the shaded boxes in Fig. 9-11. 

 
Fig. 9. Data and background scan for a properly-aligned sensor. Two people 

being tracked by the system are visible to this sensor, and a mask is generated 

to cover their estimated angular widths. 

 

 
Fig. 10. Data and background scan for that sensor after a misalignment event. 

The mask and background scan are unaffected, but the real data is offset by a 

lateral offset of 10 cm and an angle of 15˚. 

 

 
Fig. 11. The absolute distance error between sensor data and background 

scan, shown for the sensor positions shown in Fig. 7 and Fig. 8. Excluding 

the masked area, the average error value was 84 mm before displacement, 

and 5301 mm after displacement. 

 

We use the absolute distance error between foreground and 

background scans,
ii bd  , as an indicator of whether a 

sensor could be misaligned. The absolute distance error for 

the sensor before displacement, as a function of scan angle, is 

shown in black in Fig. 11. This indicates the difference 
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between the two lines in Fig. 9. Here, the majority of the 

distance error can be attributed to the people being tracked, 

and thus the large values lie mostly within the masked region 

M. The function is very small outside of the masked region. 

The absolute distance error after displacement is shown in 

gray in Fig. 11, representing the difference between the two 

lines in Fig. 10. This function has very large values outside the 

masked region, meaning those error values cannot be 

attributed to people being tracked. These values are large due 

to the offset between the background and foreground scans. 

To isolate the error due to background scan offset from the 

error due to people, we define an error function E by summing 

the absolute distance error between the foreground and 

background scans over all points within the unmasked area, 

and normalizing this value by N, as specified in Eq. 9. 
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Our error detection algorithm sets a sensor’s error flag 

when the value of E exceeds an error threshold. When an error 

is flagged, the system automatically removes the sensor’s data 

from the tracking calculations. It also alerts a human operator 

to rebuild that sensor’s background scan and re-calibrate its 

position. This process could be automated, but we prefer to 

alert the operator because the sensor may need to be 

physically moved back into position. 

B. Performance Evaluation 

We evaluated our error detection system in two ways: first, 

through simulations using recorded data from our field trials, 

and second, through real-time trials using a human tracking 

system inside our laboratory.  

1) Simulation 

To evaluate our error detection mechanism in a high-traffic 

environment, we performed tests using data from our 

Universal CityWalk field trial environment on busy days. 

Since actual instances of sensors being pushed out of 

alignment were not logged, we simulated the displacements.  

To simulate a displacement, a sensor’s estimated position 

was offset by a random distance (Gaussian, σ=100 mm) and 

angle (flat distribution, -45˚ < θ < 45˚), and its scan data were 

translated, rotated, and resampled to simulate the offset. 

1000 displacement events were simulated in a 3-hour data 

set, and E was recorded for each sensor before and after each 

event. The distributions of error values for properly-aligned 

and displaced sensors are shown in Fig. 12. 

This comparison enables an appropriate threshold value to 

be determined on the basis of minimizing false alarms (type I 

errors) or missed alarms (type II errors). For example, 

choosing a threshold value of 350 would lead to a 0.8% false 

alarm rate and a 2.6% missed alarm rate for this data set. 

Using this threshold, we verified the performance of our 

error detection system using a different 3-hour data set. Of 

1000 post-displacement and 1000 pre-displacement 

evaluations, there were 17 missed alarms (1.7%) and only 2 

false alarms (0.2%).  

 
Fig. 12. Frequency histogram of error function values for properly-aligned 

and displaced sensors in our simulation using recorded data. 

 

2) Online Performance 

To validate this technique with an online system, we used 

the 3-sensor human tracking system described in Sec. IV-G. 

One person was asked to casually walk a random path around 

the room, while another was asked periodically to physically 

push one of the sensors out of place to an approximate lateral 

displacement of up to10 cm, and an angular displacement of 

up to 45˚. 

Before and after each displacement we recorded the error 

value E for the displaced sensor. After each displacement, the 

sensor’s background scan was rebuilt and its position 

re-calibrated. 

Over 10 trials, the average value of E was 240 before sensor 

displacement and 1160 after displacement. The system 

correctly detected all 10 displacements, and there were no 

false alarms. 

VI. DISCUSSION 

A. Stopping criteria 

Although a formal stopping criterion has not been defined 

in this paper, the estimates of sensor variance give good 

indications of convergence of the system. However, we have 

not formally tested the robustness of this stopping criterion. 

B. Absolute position calibration 

The technique in this paper addresses the problem of 

relative sensor position calibration, but registration with an 

external coordinate system will usually be necessary once 

relative calibration has been completed. 

Our system includes a graphical interface that allows the 

calibrated sensor network to be manually dragged and rotated 

relative to a fixed map of the tracking area in absolute 

coordinates. To obtain a first approximation before this 

manual registration step, a list of rough sensor positions can 

be used to define the starting position for the base sensor pair 

during position estimation. 

C. Field-of-view overlap 

Generally speaking, it is not necessary to establish 

constraints between every pair of sensors. The minimum 
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requirement is that there be some chain of constraints 

eventually linking any pair of sensors, i.e. if constraints A-B 

and B-C are known, computation of constraint A-C is not 

necessary. 

Because these constraints are approximate, however, 

calibration accuracy increases as more constraints are known. 

Since constraints can only be computed from shared 

observations, best performance is obtained when there is a 

large field-of-view overlap between sensors. 

D. Time Delay 

In our laboratory system as well as our field system, data 

from all sensors was collected on a single PC through a wired 

connection, so network lag and clock synchronization issues 

are not a concern. 

However, for systems using wireless networks or multiple 

data collection PC’s, synchronization is an important issue. 

By using NTP to synchronize PC clocks and tagging sensor 

data with time stamps, it should be possible to synchronize the 

data from multiple sensors and perform sensor calibration 

even when there are network delays. 

VII. CONCLUSIONS AND FUTURE WORK 

We have proposed a technique for automatically 

determining relative positions and orientations for laser range 

finders by observing only pedestrian motion in the space, and 

without using scan matching or explicit landmarks. We have 

also proposed a method for determining when any sensor in 

the network has been displaced, information which can be 

used to prevent corrupted data from being used in tracking 

calculations and to notify an operator of the problem. 

We have demonstrated our calibration technique in real 

time with a tracking system in the laboratory, and we have 

shown the effectiveness of our displacement detection 

technique both in laboratory tests and in simulations based on 

recorded data. 
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