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Abstract—We present a novel design framework enabling the 

development of social robotics applications by cross-disciplinary 

teams of programmers and interaction designers. By combining a 

modular back-end software architecture with an easy-to-use 

graphical interface for developing interaction sequences, this 

system enables programmers and designers to work in parallel to 

develop robot applications and tune the subtle details of social 

behaviors. In this paper, we describe the structure of our design 

framework, and we present an experimental evaluation of our 

system showing that it increases the effectiveness of programmer-

designer teams developing social robot applications. 
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I. INTRODUCTION 

The field of social robotics is still young, and although 
much research has focused on details of creating humanlike 
interactions for social robots, little attention so far has been 
paid to the development process itself, which is usually 
performed by programmers. However, this is really a cross-
disciplinary process integrating technical knowledge of 
hardware and software, psychological knowledge of interaction 
dynamics, and domain-specific knowledge of the target 
application. 

The development of social robot applications faces not only 
the conventional challenges of robotics, such as robot 
localization and motion planning, but also new challenges 
unique to social robots, including new kinds of sensory-
information processing, dialog management, and the 
application of empirical design knowledge in interaction. 
Examples of this design knowledge include maintaining 
acceptable interpersonal distance [1], approaching people from 
a non-frontal direction [2], and controlling the duration and 
frequency of eye contact [3], all of which have been shown to 
be important for social robots. 

Applications developed in a research context are usually 
small-scale and engineered by small groups of highly-capable 
individuals. However, scaling this process to the level of real-
world commercial deployment requires a collaborative design 
process involving people with different areas of expertise. 

For example, algorithms and software modules are often 
developed for information-processing tasks like human 
tracking, social group detection, gesture recognition, prediction 
of human behavior, or dynamic path planning. Development of 
such modules fundamentally requires programming expertise. 

Other tasks do not, by their nature, require programming 
ability. These include scripting the robot‟s utterances, choosing 

gestures, and structuring the sequence of the robot‟s actions. 
Sometimes the specialists most qualified to design the 
interaction flows or contents of robot behaviors are non-
programming researchers or domain experts. However, these 
specialists are often required to rely upon programmers for 
development and modification of interaction flows and 
behavior contents.  

Such a design process is inherently inefficient. To improve 
efficiency in the design of social robotics applications, a 
structured framework is necessary to enable these 
fundamentally distinct aspects of social robot application 
development to be conducted in parallel.  

In this paper we propose a framework which uses clearly-
defined layers of abstraction to allow this kind of parallel 
development. In our framework, programming specialists are 
free to focus on low-level programming tasks like hardware 
interfacing or data processing. These low-level components are 
then encapsulated and presented to interaction designers via an 
easy-to-use graphical interface for developing interaction flows 
and fine-tuning details of the robot‟s utterances and gestures. 

II. RELATED WORK 

Related research has explored robotics development 
frameworks, dialogue management, and the handling of 
gestures and nonverbal communication. 

A. Development frameworks 

Many powerful development tools exist for programming 
robot systems [4], and some frameworks such as ROS and 
Player/Stage have been adopted widely by robotics specialists. 
Development environments such as Choreographe [5] enable 
smooth motion and behavior planning for complex operations 
such as dancing. Some development environments are targeted 
towards novice users or even young children [6]. However, all 
of these systems generally focus on conventional robotics 
problems such as navigation, mapping, and motion planning. 

Some development environments are targeted more 
specifically towards development of robots for social 
interaction, including the capacity for developing dialogue 
management in addition to conventional robotic capability [7, 
8]. However, these systems are still based on programming or 
scripting, and are not intuitive for nontechnical users. 

For dialogue development, the CSLU RAD toolkit [9] 
provides a flowchart-based interface for building dialogue 
flows, but its inputs and outputs are limited to speech only. A 
framework for social robots will need to handle many kinds of 
sensor inputs and actuate both speech and robot motion. 

This work is supported by the NEDO (New Energy and Industrial 
Technology Development Organization, Japan) project, „Intelligent RT 

Software Project.‟ 



B. Dialogue management 

1) Traditional dialogue management 
There are three main approaches that have been used to 

create dialogue management systems: state-based, frame-based, 
and plan-based [10].  

State-based systems generate utterances and recognize 
users‟ responses according to a state-transition model, like a 
flowchart. This approach is simple and intuitive, and thus easy 
to implement and often used in working systems.  

Frame-based systems fit users‟ responses into pre-defined 
slots in “frames” to estimate user goals. These are often used 
for telephone-based dialogue systems, e.g. for providing 
weather or transportation information. Frame-based systems 
can handle more complex information, but involve more effort 
for preparation of such frames of knowledge.  

Plan-based, or “agent-based,” systems use a set of rules to 
change the internal states of an agent to navigate through 
conversation, e.g. [11]. These can handle the most complex 
interactions, but require very advanced natural-language 
processing and well defined sets of rules. This approach is 
often used in research but rarely used in working systems [10]. 

We chose a state-based approach, as it is the simplest of 
these three, and it is sufficient to represent the flow of a simple 
conversational interaction. As our system is aimed at non-
programmers, simplicity and clarity are important for usability. 

Although handling user-initiated interactions is one weak 
point of state-based approaches, it is possible to build rich 
interactions by designing them to be robot-initiated. This may 
appear to be a disadvantage of state-based modeling, but it is 
worth noting that robot-initiated interactions are often 
necessary in order to set expectations for a robot‟s capabilities. 

2) Dialogue management in robotics 
In robotics, dialogue management has sometimes been 

studied while taking real-world difficulties into consideration. 
For example, Matsui et al. integrated multimodal input for a 
mobile office robot [12, 13]. Roy et al. used POMDP's to take 
account of speech recognition errors in state-based transitions 
of dialogue [14, 15]. For social robots, many architectures for 
cognitive processing have been developed [16, 17]. The 
BIRON system has used state-transition models [18] and 
common-ground theory [19] to direct dialogue. However, the 
majority of such systems have been task-oriented, that is, 
aimed primarily at communicating commands or teaching 
information to a robot [8, 20, 21].  This is different from social 
dialogue, where the goal of the robot may be to entertain, 
interest, or persuade a customer. 

Some research has focused on using generic dialogue 
patterns to generate dialogue for human-robot interaction, e.g. 
[22, 23]. Such research has been directed towards modeling 
exchanges such as factual confirmations, but not stylistic 
aspects such as politeness or subtlety of wording. Although 
such patterns enable automation of certain simple exchanges, it 
is not yet possible to create humanlike social interaction based 
on dialogue patterns alone. For applications focusing on social 
interaction, human knowledge is still needed at the level of 
implementing dialogue flow.  

C. Nonverbal communication 

For embodied robots, interaction includes not only dialog 
management, but nonverbal communication as well. Many 
aspects of nonverbal behavior have been explored, such as the 
use of gestures and positioning [4, 7, 11, 22, 24, 25], gaze 
control [3, 26, 27, 28], and nodding [27, 29]. Nakano et al. also 
developed a mechanism to generate nonverbal behavior based 
on speech context in an embodied conversation agent [30]. 

Our proposed architecture allows such nonverbal behaviors 
to be implemented in the robot. Both implicit behaviors, such 
as gaze-following, and explicit behaviors, such as gestures 
synchronized with the dialog, are supported. 

III. INTERACTION DESIGN FRAMEWORK 

A.  Division of Roles 

The concept of division of roles drives the design of our 
proposed approach. Roughly speaking, we can categorize the 
main developers of a robot application into “programmers” and 
“designers.” Developers in these two roles contribute in 
different ways to the implementation of a social robotics 
application. These different contributions must be reflected in 
the design framework and user interface. 

1) Programmer 
There are several tasks which by their nature require 

programming expertise. 

Hardware interfacing: Adding new sensors or actuators to 
the system will require work at the robot driver level to enable 
the new components to operate with the robot‟s control system. 

Data processing: New recognition techniques or machine 
learning algorithms will be necessary to help the robot 
understand the situation in its environment.  

Behavior development: Basic interactive robot behaviors 
need to be developed, e.g. a behavior for approaching a moving 
person in a socially-appropriate way, based on tracking 
information from an external sensor network. 

2) Interaction Designer 
The tasks of an interaction designer center around the 

creation of content for the robot‟s interactions, and the creation 
of logical sequences of robot behaviors to be executed. 
Specifically, design tasks include the following: 

Dialogue generation: An interaction designer will need to 
specify the robot‟s utterances and gestures. To tune the robot‟s 
performance, a designer could adjust the speed of the robot‟s 
actions or speech, or insert appropriate pauses. 

Interaction flow design: By linking the robot‟s behaviors 
into sequences, a designer can create interaction flows. The 
designer needs to consider the order in which the robot should 
present information, when it should ask questions, and how it 
should respond to a person‟s actions. Non-dialogue elements 
could be used in these flows, such as driving to a new location 
or approaching a customer. An understanding of HRI design 
principles would be useful for an interaction flow designer. 



 

Figure 1.  Four-layer robot control architecture. 

Content entry: It may also be necessary to enter large 
amounts of domain-specific content, such as items in a 
restaurant menu, details about products in a store, directions to 
locations in a shopping mall, or information about seasonal 
events. This task might require a designer with specific domain 
knowledge relevant to the target application. 

B. Robot control architecture 

Our system uses a four-layer architecture, shown in Fig. 1. 
While similar to other modular architectures, the emphasis here 
is on the encapsulation of low-level control and processing into 
simple components such as behaviors and explicit gestures, 
which can easily be used by a non-programming designer to 
create social interaction flows. 

1) Robot Driver Layer 
The lowest layer is the robot driver layer, which contains 

hardware-specific driver modules. These modules support 
abstract interfaces that hide minor differences between similar 
robots, such as different motor or joint configurations, or size 
differences (e.g. slightly longer/shorter arms, human-size or 
baby-size, etc.). This enables the same applications and 
behaviors to be used with different robots, as long as they are 
functionally similar, e.g. wheeled humanoid robots. Our 
architecture currently supports four robot platforms. 

The concept of modular drivers is not new, and in theory it 
should be possible to implement a system like ours on top of 
popular modular middleware frameworks such as Microsoft‟s 
Robotics Developer Studio or Willow Garage‟s ROS. 

2) Information Processing Layer 
The information processing layer contains sensing and 

actuation modules. Sensing modules are components related to 
recognition of environments and activities in the real world. 
Examples include localization, human tracking, face detection, 
speech recognition, and sound source localization.  

Actuation modules perform processing for tasks like path 
planning or gaze following. Some knowledge about social 
behavior is implemented here. Following the approach in [31], 
we classified non-verbal behaviors as implicit, which do not 
need to be specified by designers, and explicit, which need to 

be synchronized with utterances. Based on the state of 
conversation (e.g. talking, listening, or idling), components in 
this layer generate implicit behaviors such as gaze control. 

Some frameworks (e.g. Microsoft RDS), are primarily 
targeted towards development at this level for robotics research 
or education, but our framework considers this layer mainly as 
infrastructure to enable the creation of higher-level behaviors. 

3) Behavior Layer 
The concept of a robot “behavior” as a combination of 

sensor processing and actuation is used both in behavioral 
robotics, e.g. [32], and in social robotics [25]. Examples for 
social robots include guide behaviors incorporating speech, 
gesture, and timing, or approach behaviors which react to a 
person‟s trajectory [33]. 

In our architecture, behaviors are implemented as software 
modules in the behavior layer which execute actions and react 
to sensor inputs. They can incorporate social knowledge, for 
example, by specifying gestures like tilting the robot‟s head to 
one side while asking a question [31]. It is also possible to 
design behavior modules to be configured by designers from 
the application layer. This is a powerful concept, as it enables 
the development of flexible, reusable behavior modules. 

4) Application Layer 
The highest layer is the application layer, where designers 

can develop social robot applications. Using “Interaction 
Composer,” the graphical interaction development environment 
shown in Fig. 2, non-programmers can access behavior and 
sensor modules in the underlying layers. This software enables 
interaction flows to be built by assembling behavior and 
decision blocks into sequences resembling flowcharts.
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C. Interaction Composer 

It is important to note that Interaction Composer (IC) is not 
simply a graphical programming language. Its graphical 
representations map directly to the underlying software 
modules, making it a tool that bridges the gap between 
designers and programmers. 

1) Behavior Blocks 
Behavior blocks (the blue blocks in the flow example 

shown in Fig. 2) allow the designer to use the behavior 
modules defined by programmers. These can represent 
behaviors like asking a question or giving directions. By 
configuring the properties of a behavior, the designer creates a 
“behavior instance.” A behavior flow may contain many 
instances of general behaviors like “Talk” and “Ask”. When a 
programmer creates a new behavior module, a corresponding 
block becomes available for designers to use in IC.  

A developer can also allow a designer to provide arguments 
for behaviors. By configuring behaviors through IC, a designer 
can easily use behaviors in different ways without knowing the 
details of the program embedded in the behavior. 

                                                           
1
 Interaction Composer is a part of the Intelligent RT Software 

project supported by NEDO. The software is available by 

request until the end of 2011 at http://www.irc.atr.jp/ptRTM/. 

Its availability after that period is currently under discussion. 
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Figure 2.  Screenshot of Interaction Composer. 

Fig. 3 shows two possible configurations of the "Approach" 
behavior. The behavior itself involves complex information 
processing such as dynamic path-planning for approaching 
from the frontal direction of the person. However, the concept 
of "approach" is easily understood, and thus a designer can use 
the behavior without knowing the details of internal 
mechanism. There are three arguments prepared for the 
"Approach" behavior: the robot's speed, the distance at which 
to speak to the target person, and the contents of utterance. The 
designer could configure the behavior for "slow speed" and 
"social distance (1.5 m)" for approaching a waiting person; or 
with "fast speed" and "public distance (3 m)" in case of 
catching up with a person who forgot an item. 

IC also supports easy addition of robot gestures. Fig. 4 and 
5 show screens for editing gestures to be associated with 
utterances. In Fig. 4, a designer inputs an utterance, (”How 
about this laptop?”), and then chooses a part (”this laptop”) to 
add a gesture. By clicking the "reference" button in Fig. 4, a 
new screen for reference (pointing) gesture appears (Fig. 5), in 
which the designer can choose a pre-defined label ("LaptopA") 
for a pointing gesture. The robot will do the pointing gesture 
when it utters the "this laptop" phrase toward the object labeled 
"LaptopA".  Other gestures, such as “emphasis,” “big,” “small,” 
etc.  can also be selected. 

The robot also used implicit gestures, causing it to move its 
arms and head slowly while idling, more actively while talking, 
and tilting its head to the side while asking questions. When 
explaining the different products, explicit behaviors were also 
included in the utterances, such as emphasis gestures and 
pointing to the products being explained. 

2) Decision Blocks 
The flow of the interaction can be controlled by using 

decision blocks (the pink blocks in Fig. 2) to direct the 
execution flow based on data from sensor inputs or internal 
state variables. These blocks enable the designer to work 
directly with human-readable data from the information 
processing layer (see Sec. III-B-2). 

 

  

Speed: Slow speed 
Distance to talk: Social (1.5m) 
 

(a) Case of First Meeting 

Speed: Fast speed 
Distance to talk: Public (3m)  
 

(b) Case of Catching up 

Figure 3.  Example configurations of an "Approach" behavior 

 

Figure 4.  Selection of the utterance where a robot points to an object 

 

Figure 5.  Selection of a pointing target 

Examples of sensor inputs are the “ListenWord” (speech 
recognition results) and “DistanceHumanToLabel” (human 
position tracking) variables. For example, if a designer creates 
a scenario for shop assistant robot, the designer could specify 
that the robot should ask if the customer is looking for a 
desktop when “DistanceHumanToLabel(DesktopPC) <=1000”,  
meaning the customer is standing within one meter of the 
desktop PC. This information comes from the information 
processing layer, so the designer needs to know nothing about 
the implementation of the tracking algorithm. 

 “Sequential” and “random” decision blocks are also 
provided, which can be used to select a different output node 
each time they are executed. These blocks can be useful for 
adding lifelike variation to behaviors which are often repeated. 

3) Sequences 
Using only behavior and decision blocks, a program can 

quickly grow to be unmanageable in size and complexity. To 
manage this complexity, our system enables encapsulation of 
execution flows into subroutines, which we call “sequences.” 

Sequences (the yellow blocks in Fig. 2) can be edited as 
separate execution flows, and then used as blocks within other 
sequences. They are a powerful tool, increasing readability and 
enabling structured development and debugging of interactions.  

Hi, Mr. A! 

Nice to Meet you
Hey!

Don‟t forget this!



 

Figure 6.  Layout of robot and computers in experiment space. 

Some uses for sequences include encapsulating common 
tasks such as confirmation questions or delineating sections of 
a dialogue flow. 

4) Interrupts 
The flowchart-based representation of a dialog flow is 

helpful for structured, robot-driven interactions, but it does not 
allow us to easily react to unexpected situations. For example, 
if a customer walks away during an interaction, it might be best 
for the robot to stop speaking and begin searching for a new 
customer. Yet, a flow which performs such a check after every 
utterance would be tedious to build and hard to read. 

For situations like this, we provide an "interrupt” 
mechanism. When the conditions of an interrupt are satisfied, 
the robot‟s execution flow will jump to a specified sequence.  

For example, an interrupt could monitor the robot‟s on-
board laser range finder, interrupting the flow if no human is 
detected in front of the robot. If this interrupt is triggered 
during a conversation, it means the customer has walked away, 
so instead of finishing a one-sided conversation, the robot 
could search for a new customer. 

IV. EXPERIMENTAL EVALUATION 

We conducted an experiment to evaluate the effectiveness 
of our parallel design approach using Interaction Composer. In 
our experiment, teams of one programmer and one designer 
collaborated to develop a small application for a shopkeeper 
robot at a computer store. An example of one application 
developed in this experiment can be seen in the video in [34]. 

A. Conditions 

We used a between-participants experimental design with 
two experimental conditions: with-IC and no-IC. In the with-IC 
condition, the designer used Interaction Composer to build the 
behavior flow, while the programmer worked in C to solve the 
programming problems. For the no-IC condition, Interaction 
Composer was not provided. Instead, the designer created 
interaction flows on paper, and the programmer implemented 
them in C, while also working on the programming tasks. 

B. Experimental Setup 

For this experiment we used a Robovie R-2 humanoid 
robot. Speech recognition was performed using the ATRASR 
speech recognition engine [35], and face detection was 
performed using a custom application written using OpenCV. 

The experimental environment was laid out as shown in 
Fig. 6, with a stationary robot placed behind a table. Three 
laptop PC‟s were placed on the table, and a customer stood 
across the table from the robot, looking at the PC‟s. As the 
customer moved around to examine different PC‟s, the robot 

could determine the customer‟s position by turning its head and 
using face detection, and it could conduct simple conversations 
with the customer using speech recognition. 

C. Task Specifics 

To choose an appropriate balance of tasks, we considered 
what a typical preparations for a deployment of social robots 
might entail. Let us assume robots are to be deployed in a retail 
shop as sales associates. This would require sophisticated 
social interactions such as providing product information, 
making recommendations based on customer needs, explaining 
special offers, and gently encouraging customers to buy more 
expensive products or accessories. The robots would need to 
display professionalism as their actions reflect on the shop and 
influence customers‟ purchasing decisions. Assume further that 
the core robot system itself is a stable system for commercial 
use, but it has recently been upgraded with new sensors. 

The design tasks to prepare for such a deployment might 
include developing hundreds of explanations, creating many 
different patterns of interaction sequences, fine-tuning the 
timing and gestures, and testing the smoothness of flow 
transitions. Programming tasks might include developing and 
testing recognition software for use with the new sensors. In 
such a situation, it would clearly be advantageous to have the 
interaction content developed by domain experts familiar with 
the products and sales techniques in the shop, enabling the 
programmers to concentrate on the programming tasks. 

Although a real development cycle would require many 
people and several months, we designed this experiment to be 
completed within a single day. To demonstrate our proposed 
approach, representative design and programming tasks were 
chosen which could be achievable within a few hours of work. 
The task specifications were the same for both conditions. 

1) Design Task 
The design task for this experiment was to develop content 

and an interaction flow enabling the robot to explain at least 
two features (price, CPU speed, etc.) of each of three 
computers in a socially smooth conversation with a customer. 

Participants were given a set of behaviors and functions, 
presented in Table I along with their C API equivalents for the 
no-IC condition. A list of available gestures was also provided. 
In both conditions, gestures were added by placing markup tags 
in the text to be spoken, as in the following example. 

This PC has <gesture type=”emphasis”> six 

hours </gesture> of battery life. 

1) Programming Task 
The programming task focused on the processing of sensor 

data, which is a common task for robotics programmers. We 
provided participants with a face detection application for 
identifying whether a customer was present and where they 
were standing. As real-world data is noisy, the programmer‟s 
first task was to create a simple filter to remove false face 
detections based on features such as height and width. 

The second task was to compute the customer‟s position in 
space, based on the face detection data. This would enable the 
robot to turn its head towards the customer while interacting. 



TABLE I.  BEHAVIORS AND VARIABLES 

Behavior C Function Description 

Talk void talk(string text); Speak and/or perform 

gestures. 

Ask void ask(string text, int time, 

string expectedResponses); 

Speak, then listen for a 

spoken response within a 

given time limit. 

LookForFace int lookForFace(); 
Return 0 for left, 1 for center, 

2 for right, 3 for none. 

Look for a face to the left, 
center, and right of the 

robot. 

 

Variable C Function Description 

faceDetected int isFaceDetected(); 
Return 1 if face detected, 0 if none. 

True if a face is 
currently visible 

listenWord int isSpeechResult(string result); 

Return 1 if the speech result was 
equal to result, or 0 otherwise. 

Most recent 

speech recognition 
result 

 

D. Fairness of conditions 

For this experiment it was essential to provide exactly the 
same capabilities in both the C interface and the Interaction 
Composer (IC) interface. To make the interfaces as equivalent 
as possible, we created a single C function corresponding to 
each behavior template available in IC, as shown in Table I.  

For example, Fig. 7 shows a simple flow in IC. The same 
flow could be built using our C interface as follows: 

while (lookForFace()==3) {}  

talk(“Welcome to my computer shop!”); 

C equivalents of the conditional, sequential, and random 
decision blocks were not provided, as this functionality is 

easily available in C, using if statements, for loops, and the 

rand() function.  

The equivalent of sequences is also trivial to implement in 
C, simply by defining a function, and interrupts were not used 
for either condition in this experiment. Thus, all functionality 
available in IC was also easily usable in the C interface. 

E. Participants 

32 pairs of participants (49 male, 15 female, average age 
24.8 years) took part in this experiment. Designers were 
required to have no computer programming experience, and 
programmers were required to have basic proficiency in the C 
language. Programmers were also given an entry-level C 
programming test before the experiment, and their scores were 
used to choose the condition for their trial. This enabled us to 
balance the skill levels of the programmers between conditions. 

F.  Procedure 

After 2 hours of instruction, 3.5 hours were given for 
developing the robot application. Each hour, we evaluated the 
progress of the application using a checklist of 17 
requirements, and we gave the participants feedback about 
missing features or serious problems. 

The requirements checklist was independent of the 
experimental condition, and was strictly an evaluation of the 
robot‟s outward behavior, not the underlying implementation. 
Examples include the following: 

 

Figure 7.  Example flow using IC. 

 Greet the customer when they arrive. 

 Introduce at least two features of each product. 

 Explain only features requested by the customer. 

 Show variety in utterances when they are repeated. 

 Say goodbye only when the customer has left. 

G. Evaluation 

We evaluated the overall quality of the completed 
applications and performed secondary evaluations of the 
individual subtasks.  

1) Primary Evaluations 
We first measured the overall quality of the completed 

applications using the requirements checklist, for a score from 
0 to 17, where 9 points represents completion of all basic tasks. 

We also conducted an interactive evaluation, in which two 
evaluators, blind to the experimental conditions, spent 10 
minutes interacting with the robot for each application and 
gave subjective quality ratings on a 100-point scale. These 
evaluators considered things like the appropriateness of 
utterances, naturalness of gestures, and how the robot made 
them feel as a customer. 

2) Secondary Evaluations 
We measured performance on the programming tasks by 

testing the accuracy of the face detection filter and noting 
whether the second programming task had been completed, as 
many teams skipped this optional task due to time pressure. 

To quantitatively measure the complexity of the interaction 
design, we counted the number of unique utterances used in 
each interaction flow, expecting that interactions of higher 
quality will display a greater variety of utterances. 

V. RESULTS 

Results of primary evaluations regarding the overall 
performance of the robot application are shown in Fig. 8, and 
results from secondary evaluations are shown in Fig. 9. 

A. Overall achievement 

For the interactive evaluation, we averaged the ratings 
between the two evaluators. A one-way ANOVA conducted for 
the interactive evaluation results revealed a significant main 
effect (F(1,30)=20.659, p<.001, partial η

2
=.408). A one-way 

ANOVA conducted for the checklist scores also revealed a 
significant main effect (F(1,30)=9.905, p=.004, partial 
η

2
=.248). Applications in the with-IC condition significantly 

outperformed those in the no-IC condition in both evaluations.  



     

Figure 8.  Results for primary evaluations. 

 

Figure 9.  Results for secondary evaluations. 

B. Secondary evaluations 

Face tracking accuracy was similar between the two 
conditions. A one-way ANOVA conducted for face-tracking 
accuracy revealed no significant effect (F(1,30)=.299, p=.589, 
partial η

2
=.010). As we intentionally balanced the ability levels 

of programmers between conditions, is unsurprising that we did 
not see a significant difference in this task. In the no-IC 
condition, programmers typically gave this task priority and 
completed it before working on the interaction flow. For Task 2 
completion, however, a chi-square test revealed a significant 
difference between conditions (χ

2
(1) = 18.286, p<.001, φ=.758). 

Only 19% of programmers in the no-IC condition 
completed the second task, compared with 94% in the with-IC 
condition. Programmers in the no-IC condition were usually 
too busy building the interaction flow to work on this lower-
priority programming task. 

Finally, a one-way ANOVA was conducted for the number 
of unique utterances, revealing a significant main effect 
(F(1,30)=12.760, p=.001, partial η

2
=.298). These results 

showed significantly more utterances in the with-IC condition, 
indicating that the increased involvement of the designer 
enabled the creation of more complex interaction flows. 

VI. DISCUSSION AND CONCLUSIONS 

A. Observations 

During our experiment, different teams used our design 
framework with varying degrees of success. One thing we 
observed is that a clear understanding of the interface between 
the programming side and the interaction design is critical for 
productive collaboration. Some designers using IC 
misunderstood the functionality of the robot‟s behaviors, for 
example, confusing the LookForFace behavior and the 
faceDetected variable. These designers built flows with 
redundant or incorrect use of behaviors. 

 

 

Figure 10.   Examples of flow organization. 

All teams in the with-IC condition used sequences, but 
some were more effective than others. Many designers built 
nearly the entire flow within a single sequence, e.g. Fig. 10 
(upper left). Others took advantage of the graphical freedom in 
IC to arrange the elements into visual groups, e.g. Fig. 10 
(upper right). More than half of the teams organized their flows 
by using top-level sequences, e.g. Fig. 10 (bottom). The most 
successful teams used sequences extensively (the best used 11, 
while most used 5 or fewer) to encapsulate tasks like asking 
confirmation questions or confirming the customer‟s presence. 

In some of the more successful no-IC cases, programmers 
took strong initiative in the interaction design, using the 
designer‟s flow as a rough guideline since the designer did not 
have a clear understanding of what was difficult or easy to 
implement. The best programmers were able to generate logical 
flows equivalent to average-performance flows in the with-IC 
condition, but their flows lacked advanced features like checks 
to see if the customer had moved, variation in utterances, and 
small talk. These features were present in many with-IC flows. 

Many unsuccessful no-IC cases failed because of mistakes 
in software design. As text is a linear medium, it can be hard to 
see the structure of an interaction flow just by looking at source 
code. Without a visualization of the structure, many 
programmers forgot to handle important contingencies, such as 
the case when no speech recognition result is received.  

B. Scalability 

Scalability is a concern for any programming environment, 
and while our results show that the state-based approach we use 
for dialog management is useful for simple flows, its scalability 
and flexibility remain important questions. 

We have found this approach useful for long, mostly-linear 
flows, and if the robot guides the interaction by asking 
questions, people‟s responses are usually predictable. We have 
also found it to be effective for interactions where the robot 
needs to make simple responses to a large number of keywords, 
e.g. providing directions to one of 90 places in a shopping mall.  

The state-based approach is not as effective when the robot 
needs to remember interaction history, e.g. offering to explain 
only information it has not already presented. In these 
situations the complexity of the flow rises exponentially with 
the amount of state that needs to be remembered. Such 
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situations are fairly common in social interactions, so for some 
applications we have developed custom behavior modules to 
handle interaction history.  

So far, the current balance between functionality and ease-
of-use has been sufficient for our applications. No doubt this 
balance will change in the future as applications become more 
complex. However, the principle of enabling designers and 
programmers to collaborate through parallel development will 
only become more important as complexity increases. 

C. Conclusions 

In this paper we have presented a novel interaction design 
framework which enables non-programmers and programmers 
to work in parallel to develop interactive applications for social 
robots. In our experiment we have validated that this new 
design approach increases efficiency and application quality. 

Structuring the development process to reflect the unique 
roles of designers and programmers should help to increase 
efficiency and enable both programmers and designers to 
produce higher quality work, making this a first step towards a 
scalable development process that will eventually be applicable 
to commercial social robotics applications. 
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