
An Interaction Design Framework for Social Robots

Dylan F. Glas, Satoru Satake, Takayuki Kanda, Norihiro Hagita

Intelligent Robotics and Communication Laboratories, ATR, Kyoto, Japan

{dylan, satoru, kanda, hagita}@atr.jp

Abstract—We present a novel design framework enabling the

development of social robotics applications by cross-disciplinary

teams of programmers and interaction designers. By combining a

modular back-end software architecture with an easy-to-use

graphical interface for developing interaction sequences, this

system enables programmers and designers to work in parallel to

develop robot applications and tune the subtle details of social

behaviors. In this paper, we describe the structure of our design

framework, and we present an experimental evaluation of our

system showing that it increases the effectiveness of programmer-

designer teams developing social robot applications.

Keywords-human-robot interaction; software development;

social robotics; programming interfaces;

I. INTRODUCTION

The field of social robotics is still young, and although
much research has focused on details of creating humanlike
interactions for social robots, little attention so far has been
paid to the development process itself, which is usually
performed by programmers. However, this is really a cross-
disciplinary process integrating technical knowledge of
hardware and software, psychological knowledge of interaction
dynamics, and domain-specific knowledge of the target
application.

The development of social robot applications faces not only
the conventional challenges of robotics, such as robot
localization and motion planning, but also new challenges
unique to social robots, including new kinds of sensory-
information processing, dialog management, and the
application of empirical design knowledge in interaction.
Examples of this design knowledge include maintaining
acceptable interpersonal distance [1], approaching people from
a non-frontal direction [2], and controlling the duration and
frequency of eye contact [3], all of which have been shown to
be important for social robots.

Applications developed in a research context are usually
small-scale and engineered by small groups of highly-capable
individuals. However, scaling this process to the level of real-
world commercial deployment requires a collaborative design
process involving people with different areas of expertise.

For example, algorithms and software modules are often
developed for information-processing tasks like human
tracking, social group detection, gesture recognition, prediction
of human behavior, or dynamic path planning. Development of
such modules fundamentally requires programming expertise.

Other tasks do not, by their nature, require programming
ability. These include scripting the robot‟s utterances, choosing

gestures, and structuring the sequence of the robot‟s actions.
Sometimes the specialists most qualified to design the
interaction flows or contents of robot behaviors are non-
programming researchers or domain experts. However, these
specialists are often required to rely upon programmers for
development and modification of interaction flows and
behavior contents.

Such a design process is inherently inefficient. To improve
efficiency in the design of social robotics applications, a
structured framework is necessary to enable these
fundamentally distinct aspects of social robot application
development to be conducted in parallel.

In this paper we propose a framework which uses clearly-
defined layers of abstraction to allow this kind of parallel
development. In our framework, programming specialists are
free to focus on low-level programming tasks like hardware
interfacing or data processing. These low-level components are
then encapsulated and presented to interaction designers via an
easy-to-use graphical interface for developing interaction flows
and fine-tuning details of the robot‟s utterances and gestures.

II. RELATED WORK

Related research has explored robotics development
frameworks, dialogue management, and the handling of
gestures and nonverbal communication.

A. Development frameworks

Many powerful development tools exist for programming
robot systems [4], and some frameworks such as ROS and
Player/Stage have been adopted widely by robotics specialists.
Development environments such as Choreographe [5] enable
smooth motion and behavior planning for complex operations
such as dancing. Some development environments are targeted
towards novice users or even young children [6]. However, all
of these systems generally focus on conventional robotics
problems such as navigation, mapping, and motion planning.

Some development environments are targeted more
specifically towards development of robots for social
interaction, including the capacity for developing dialogue
management in addition to conventional robotic capability [7,
8]. However, these systems are still based on programming or
scripting, and are not intuitive for nontechnical users.

For dialogue development, the CSLU RAD toolkit [9]
provides a flowchart-based interface for building dialogue
flows, but its inputs and outputs are limited to speech only. A
framework for social robots will need to handle many kinds of
sensor inputs and actuate both speech and robot motion.

This work is supported by the NEDO (New Energy and Industrial
Technology Development Organization, Japan) project, „Intelligent RT

Software Project.‟

B. Dialogue management

1) Traditional dialogue management
There are three main approaches that have been used to

create dialogue management systems: state-based, frame-based,
and plan-based [10].

State-based systems generate utterances and recognize
users‟ responses according to a state-transition model, like a
flowchart. This approach is simple and intuitive, and thus easy
to implement and often used in working systems.

Frame-based systems fit users‟ responses into pre-defined
slots in “frames” to estimate user goals. These are often used
for telephone-based dialogue systems, e.g. for providing
weather or transportation information. Frame-based systems
can handle more complex information, but involve more effort
for preparation of such frames of knowledge.

Plan-based, or “agent-based,” systems use a set of rules to
change the internal states of an agent to navigate through
conversation, e.g. [11]. These can handle the most complex
interactions, but require very advanced natural-language
processing and well defined sets of rules. This approach is
often used in research but rarely used in working systems [10].

We chose a state-based approach, as it is the simplest of
these three, and it is sufficient to represent the flow of a simple
conversational interaction. As our system is aimed at non-
programmers, simplicity and clarity are important for usability.

Although handling user-initiated interactions is one weak
point of state-based approaches, it is possible to build rich
interactions by designing them to be robot-initiated. This may
appear to be a disadvantage of state-based modeling, but it is
worth noting that robot-initiated interactions are often
necessary in order to set expectations for a robot‟s capabilities.

2) Dialogue management in robotics
In robotics, dialogue management has sometimes been

studied while taking real-world difficulties into consideration.
For example, Matsui et al. integrated multimodal input for a
mobile office robot [12, 13]. Roy et al. used POMDP's to take
account of speech recognition errors in state-based transitions
of dialogue [14, 15]. For social robots, many architectures for
cognitive processing have been developed [16, 17]. The
BIRON system has used state-transition models [18] and
common-ground theory [19] to direct dialogue. However, the
majority of such systems have been task-oriented, that is,
aimed primarily at communicating commands or teaching
information to a robot [8, 20, 21]. This is different from social
dialogue, where the goal of the robot may be to entertain,
interest, or persuade a customer.

Some research has focused on using generic dialogue
patterns to generate dialogue for human-robot interaction, e.g.
[22, 23]. Such research has been directed towards modeling
exchanges such as factual confirmations, but not stylistic
aspects such as politeness or subtlety of wording. Although
such patterns enable automation of certain simple exchanges, it
is not yet possible to create humanlike social interaction based
on dialogue patterns alone. For applications focusing on social
interaction, human knowledge is still needed at the level of
implementing dialogue flow.

C. Nonverbal communication

For embodied robots, interaction includes not only dialog
management, but nonverbal communication as well. Many
aspects of nonverbal behavior have been explored, such as the
use of gestures and positioning [4, 7, 11, 22, 24, 25], gaze
control [3, 26, 27, 28], and nodding [27, 29]. Nakano et al. also
developed a mechanism to generate nonverbal behavior based
on speech context in an embodied conversation agent [30].

Our proposed architecture allows such nonverbal behaviors
to be implemented in the robot. Both implicit behaviors, such
as gaze-following, and explicit behaviors, such as gestures
synchronized with the dialog, are supported.

III. INTERACTION DESIGN FRAMEWORK

A. Division of Roles

The concept of division of roles drives the design of our
proposed approach. Roughly speaking, we can categorize the
main developers of a robot application into “programmers” and
“designers.” Developers in these two roles contribute in
different ways to the implementation of a social robotics
application. These different contributions must be reflected in
the design framework and user interface.

1) Programmer
There are several tasks which by their nature require

programming expertise.

Hardware interfacing: Adding new sensors or actuators to
the system will require work at the robot driver level to enable
the new components to operate with the robot‟s control system.

Data processing: New recognition techniques or machine
learning algorithms will be necessary to help the robot
understand the situation in its environment.

Behavior development: Basic interactive robot behaviors
need to be developed, e.g. a behavior for approaching a moving
person in a socially-appropriate way, based on tracking
information from an external sensor network.

2) Interaction Designer
The tasks of an interaction designer center around the

creation of content for the robot‟s interactions, and the creation
of logical sequences of robot behaviors to be executed.
Specifically, design tasks include the following:

Dialogue generation: An interaction designer will need to
specify the robot‟s utterances and gestures. To tune the robot‟s
performance, a designer could adjust the speed of the robot‟s
actions or speech, or insert appropriate pauses.

Interaction flow design: By linking the robot‟s behaviors
into sequences, a designer can create interaction flows. The
designer needs to consider the order in which the robot should
present information, when it should ask questions, and how it
should respond to a person‟s actions. Non-dialogue elements
could be used in these flows, such as driving to a new location
or approaching a customer. An understanding of HRI design
principles would be useful for an interaction flow designer.

Figure 1. Four-layer robot control architecture.

Content entry: It may also be necessary to enter large
amounts of domain-specific content, such as items in a
restaurant menu, details about products in a store, directions to
locations in a shopping mall, or information about seasonal
events. This task might require a designer with specific domain
knowledge relevant to the target application.

B. Robot control architecture

Our system uses a four-layer architecture, shown in Fig. 1.
While similar to other modular architectures, the emphasis here
is on the encapsulation of low-level control and processing into
simple components such as behaviors and explicit gestures,
which can easily be used by a non-programming designer to
create social interaction flows.

1) Robot Driver Layer
The lowest layer is the robot driver layer, which contains

hardware-specific driver modules. These modules support
abstract interfaces that hide minor differences between similar
robots, such as different motor or joint configurations, or size
differences (e.g. slightly longer/shorter arms, human-size or
baby-size, etc.). This enables the same applications and
behaviors to be used with different robots, as long as they are
functionally similar, e.g. wheeled humanoid robots. Our
architecture currently supports four robot platforms.

The concept of modular drivers is not new, and in theory it
should be possible to implement a system like ours on top of
popular modular middleware frameworks such as Microsoft‟s
Robotics Developer Studio or Willow Garage‟s ROS.

2) Information Processing Layer
The information processing layer contains sensing and

actuation modules. Sensing modules are components related to
recognition of environments and activities in the real world.
Examples include localization, human tracking, face detection,
speech recognition, and sound source localization.

Actuation modules perform processing for tasks like path
planning or gaze following. Some knowledge about social
behavior is implemented here. Following the approach in [31],
we classified non-verbal behaviors as implicit, which do not
need to be specified by designers, and explicit, which need to

be synchronized with utterances. Based on the state of
conversation (e.g. talking, listening, or idling), components in
this layer generate implicit behaviors such as gaze control.

Some frameworks (e.g. Microsoft RDS), are primarily
targeted towards development at this level for robotics research
or education, but our framework considers this layer mainly as
infrastructure to enable the creation of higher-level behaviors.

3) Behavior Layer
The concept of a robot “behavior” as a combination of

sensor processing and actuation is used both in behavioral
robotics, e.g. [32], and in social robotics [25]. Examples for
social robots include guide behaviors incorporating speech,
gesture, and timing, or approach behaviors which react to a
person‟s trajectory [33].

In our architecture, behaviors are implemented as software
modules in the behavior layer which execute actions and react
to sensor inputs. They can incorporate social knowledge, for
example, by specifying gestures like tilting the robot‟s head to
one side while asking a question [31]. It is also possible to
design behavior modules to be configured by designers from
the application layer. This is a powerful concept, as it enables
the development of flexible, reusable behavior modules.

4) Application Layer
The highest layer is the application layer, where designers

can develop social robot applications. Using “Interaction
Composer,” the graphical interaction development environment
shown in Fig. 2, non-programmers can access behavior and
sensor modules in the underlying layers. This software enables
interaction flows to be built by assembling behavior and
decision blocks into sequences resembling flowcharts.

 1

C. Interaction Composer

It is important to note that Interaction Composer (IC) is not
simply a graphical programming language. Its graphical
representations map directly to the underlying software
modules, making it a tool that bridges the gap between
designers and programmers.

1) Behavior Blocks
Behavior blocks (the blue blocks in the flow example

shown in Fig. 2) allow the designer to use the behavior
modules defined by programmers. These can represent
behaviors like asking a question or giving directions. By
configuring the properties of a behavior, the designer creates a
“behavior instance.” A behavior flow may contain many
instances of general behaviors like “Talk” and “Ask”. When a
programmer creates a new behavior module, a corresponding
block becomes available for designers to use in IC.

A developer can also allow a designer to provide arguments
for behaviors. By configuring behaviors through IC, a designer
can easily use behaviors in different ways without knowing the
details of the program embedded in the behavior.

1
 Interaction Composer is a part of the Intelligent RT Software

project supported by NEDO. The software is available by

request until the end of 2011 at http://www.irc.atr.jp/ptRTM/.

Its availability after that period is currently under discussion.

http://www.irc.atr.jp/ptRTM/

Figure 2. Screenshot of Interaction Composer.

Fig. 3 shows two possible configurations of the "Approach"
behavior. The behavior itself involves complex information
processing such as dynamic path-planning for approaching
from the frontal direction of the person. However, the concept
of "approach" is easily understood, and thus a designer can use
the behavior without knowing the details of internal
mechanism. There are three arguments prepared for the
"Approach" behavior: the robot's speed, the distance at which
to speak to the target person, and the contents of utterance. The
designer could configure the behavior for "slow speed" and
"social distance (1.5 m)" for approaching a waiting person; or
with "fast speed" and "public distance (3 m)" in case of
catching up with a person who forgot an item.

IC also supports easy addition of robot gestures. Fig. 4 and
5 show screens for editing gestures to be associated with
utterances. In Fig. 4, a designer inputs an utterance, (”How
about this laptop?”), and then chooses a part (”this laptop”) to
add a gesture. By clicking the "reference" button in Fig. 4, a
new screen for reference (pointing) gesture appears (Fig. 5), in
which the designer can choose a pre-defined label ("LaptopA")
for a pointing gesture. The robot will do the pointing gesture
when it utters the "this laptop" phrase toward the object labeled
"LaptopA". Other gestures, such as “emphasis,” “big,” “small,”
etc. can also be selected.

The robot also used implicit gestures, causing it to move its
arms and head slowly while idling, more actively while talking,
and tilting its head to the side while asking questions. When
explaining the different products, explicit behaviors were also
included in the utterances, such as emphasis gestures and
pointing to the products being explained.

2) Decision Blocks
The flow of the interaction can be controlled by using

decision blocks (the pink blocks in Fig. 2) to direct the
execution flow based on data from sensor inputs or internal
state variables. These blocks enable the designer to work
directly with human-readable data from the information
processing layer (see Sec. III-B-2).

Speed: Slow speed
Distance to talk: Social (1.5m)

(a) Case of First Meeting

Speed: Fast speed
Distance to talk: Public (3m)

(b) Case of Catching up

Figure 3. Example configurations of an "Approach" behavior

Figure 4. Selection of the utterance where a robot points to an object

Figure 5. Selection of a pointing target

Examples of sensor inputs are the “ListenWord” (speech
recognition results) and “DistanceHumanToLabel” (human
position tracking) variables. For example, if a designer creates
a scenario for shop assistant robot, the designer could specify
that the robot should ask if the customer is looking for a
desktop when “DistanceHumanToLabel(DesktopPC) <=1000”,
meaning the customer is standing within one meter of the
desktop PC. This information comes from the information
processing layer, so the designer needs to know nothing about
the implementation of the tracking algorithm.

 “Sequential” and “random” decision blocks are also
provided, which can be used to select a different output node
each time they are executed. These blocks can be useful for
adding lifelike variation to behaviors which are often repeated.

3) Sequences
Using only behavior and decision blocks, a program can

quickly grow to be unmanageable in size and complexity. To
manage this complexity, our system enables encapsulation of
execution flows into subroutines, which we call “sequences.”

Sequences (the yellow blocks in Fig. 2) can be edited as
separate execution flows, and then used as blocks within other
sequences. They are a powerful tool, increasing readability and
enabling structured development and debugging of interactions.

Hi, Mr. A!

Nice to Meet you
Hey!

Don‟t forget this!

Figure 6. Layout of robot and computers in experiment space.

Some uses for sequences include encapsulating common
tasks such as confirmation questions or delineating sections of
a dialogue flow.

4) Interrupts
The flowchart-based representation of a dialog flow is

helpful for structured, robot-driven interactions, but it does not
allow us to easily react to unexpected situations. For example,
if a customer walks away during an interaction, it might be best
for the robot to stop speaking and begin searching for a new
customer. Yet, a flow which performs such a check after every
utterance would be tedious to build and hard to read.

For situations like this, we provide an "interrupt”
mechanism. When the conditions of an interrupt are satisfied,
the robot‟s execution flow will jump to a specified sequence.

For example, an interrupt could monitor the robot‟s on-
board laser range finder, interrupting the flow if no human is
detected in front of the robot. If this interrupt is triggered
during a conversation, it means the customer has walked away,
so instead of finishing a one-sided conversation, the robot
could search for a new customer.

IV. EXPERIMENTAL EVALUATION

We conducted an experiment to evaluate the effectiveness
of our parallel design approach using Interaction Composer. In
our experiment, teams of one programmer and one designer
collaborated to develop a small application for a shopkeeper
robot at a computer store. An example of one application
developed in this experiment can be seen in the video in [34].

A. Conditions

We used a between-participants experimental design with
two experimental conditions: with-IC and no-IC. In the with-IC
condition, the designer used Interaction Composer to build the
behavior flow, while the programmer worked in C to solve the
programming problems. For the no-IC condition, Interaction
Composer was not provided. Instead, the designer created
interaction flows on paper, and the programmer implemented
them in C, while also working on the programming tasks.

B. Experimental Setup

For this experiment we used a Robovie R-2 humanoid
robot. Speech recognition was performed using the ATRASR
speech recognition engine [35], and face detection was
performed using a custom application written using OpenCV.

The experimental environment was laid out as shown in
Fig. 6, with a stationary robot placed behind a table. Three
laptop PC‟s were placed on the table, and a customer stood
across the table from the robot, looking at the PC‟s. As the
customer moved around to examine different PC‟s, the robot

could determine the customer‟s position by turning its head and
using face detection, and it could conduct simple conversations
with the customer using speech recognition.

C. Task Specifics

To choose an appropriate balance of tasks, we considered
what a typical preparations for a deployment of social robots
might entail. Let us assume robots are to be deployed in a retail
shop as sales associates. This would require sophisticated
social interactions such as providing product information,
making recommendations based on customer needs, explaining
special offers, and gently encouraging customers to buy more
expensive products or accessories. The robots would need to
display professionalism as their actions reflect on the shop and
influence customers‟ purchasing decisions. Assume further that
the core robot system itself is a stable system for commercial
use, but it has recently been upgraded with new sensors.

The design tasks to prepare for such a deployment might
include developing hundreds of explanations, creating many
different patterns of interaction sequences, fine-tuning the
timing and gestures, and testing the smoothness of flow
transitions. Programming tasks might include developing and
testing recognition software for use with the new sensors. In
such a situation, it would clearly be advantageous to have the
interaction content developed by domain experts familiar with
the products and sales techniques in the shop, enabling the
programmers to concentrate on the programming tasks.

Although a real development cycle would require many
people and several months, we designed this experiment to be
completed within a single day. To demonstrate our proposed
approach, representative design and programming tasks were
chosen which could be achievable within a few hours of work.
The task specifications were the same for both conditions.

1) Design Task
The design task for this experiment was to develop content

and an interaction flow enabling the robot to explain at least
two features (price, CPU speed, etc.) of each of three
computers in a socially smooth conversation with a customer.

Participants were given a set of behaviors and functions,
presented in Table I along with their C API equivalents for the
no-IC condition. A list of available gestures was also provided.
In both conditions, gestures were added by placing markup tags
in the text to be spoken, as in the following example.

This PC has <gesture type=”emphasis”> six

hours </gesture> of battery life.

1) Programming Task
The programming task focused on the processing of sensor

data, which is a common task for robotics programmers. We
provided participants with a face detection application for
identifying whether a customer was present and where they
were standing. As real-world data is noisy, the programmer‟s
first task was to create a simple filter to remove false face
detections based on features such as height and width.

The second task was to compute the customer‟s position in
space, based on the face detection data. This would enable the
robot to turn its head towards the customer while interacting.

TABLE I. BEHAVIORS AND VARIABLES

Behavior C Function Description

Talk void talk(string text); Speak and/or perform

gestures.

Ask void ask(string text, int time,

string expectedResponses);

Speak, then listen for a

spoken response within a

given time limit.

LookForFace int lookForFace();
Return 0 for left, 1 for center,

2 for right, 3 for none.

Look for a face to the left,
center, and right of the

robot.

Variable C Function Description

faceDetected int isFaceDetected();
Return 1 if face detected, 0 if none.

True if a face is
currently visible

listenWord int isSpeechResult(string result);

Return 1 if the speech result was
equal to result, or 0 otherwise.

Most recent

speech recognition
result

D. Fairness of conditions

For this experiment it was essential to provide exactly the
same capabilities in both the C interface and the Interaction
Composer (IC) interface. To make the interfaces as equivalent
as possible, we created a single C function corresponding to
each behavior template available in IC, as shown in Table I.

For example, Fig. 7 shows a simple flow in IC. The same
flow could be built using our C interface as follows:

while (lookForFace()==3) {}

talk(“Welcome to my computer shop!”);

C equivalents of the conditional, sequential, and random
decision blocks were not provided, as this functionality is

easily available in C, using if statements, for loops, and the

rand() function.

The equivalent of sequences is also trivial to implement in
C, simply by defining a function, and interrupts were not used
for either condition in this experiment. Thus, all functionality
available in IC was also easily usable in the C interface.

E. Participants

32 pairs of participants (49 male, 15 female, average age
24.8 years) took part in this experiment. Designers were
required to have no computer programming experience, and
programmers were required to have basic proficiency in the C
language. Programmers were also given an entry-level C
programming test before the experiment, and their scores were
used to choose the condition for their trial. This enabled us to
balance the skill levels of the programmers between conditions.

F. Procedure

After 2 hours of instruction, 3.5 hours were given for
developing the robot application. Each hour, we evaluated the
progress of the application using a checklist of 17
requirements, and we gave the participants feedback about
missing features or serious problems.

The requirements checklist was independent of the
experimental condition, and was strictly an evaluation of the
robot‟s outward behavior, not the underlying implementation.
Examples include the following:

Figure 7. Example flow using IC.

 Greet the customer when they arrive.

 Introduce at least two features of each product.

 Explain only features requested by the customer.

 Show variety in utterances when they are repeated.

 Say goodbye only when the customer has left.

G. Evaluation

We evaluated the overall quality of the completed
applications and performed secondary evaluations of the
individual subtasks.

1) Primary Evaluations
We first measured the overall quality of the completed

applications using the requirements checklist, for a score from
0 to 17, where 9 points represents completion of all basic tasks.

We also conducted an interactive evaluation, in which two
evaluators, blind to the experimental conditions, spent 10
minutes interacting with the robot for each application and
gave subjective quality ratings on a 100-point scale. These
evaluators considered things like the appropriateness of
utterances, naturalness of gestures, and how the robot made
them feel as a customer.

2) Secondary Evaluations
We measured performance on the programming tasks by

testing the accuracy of the face detection filter and noting
whether the second programming task had been completed, as
many teams skipped this optional task due to time pressure.

To quantitatively measure the complexity of the interaction
design, we counted the number of unique utterances used in
each interaction flow, expecting that interactions of higher
quality will display a greater variety of utterances.

V. RESULTS

Results of primary evaluations regarding the overall
performance of the robot application are shown in Fig. 8, and
results from secondary evaluations are shown in Fig. 9.

A. Overall achievement

For the interactive evaluation, we averaged the ratings
between the two evaluators. A one-way ANOVA conducted for
the interactive evaluation results revealed a significant main
effect (F(1,30)=20.659, p<.001, partial η

2
=.408). A one-way

ANOVA conducted for the checklist scores also revealed a
significant main effect (F(1,30)=9.905, p=.004, partial
η

2
=.248). Applications in the with-IC condition significantly

outperformed those in the no-IC condition in both evaluations.

Figure 8. Results for primary evaluations.

Figure 9. Results for secondary evaluations.

B. Secondary evaluations

Face tracking accuracy was similar between the two
conditions. A one-way ANOVA conducted for face-tracking
accuracy revealed no significant effect (F(1,30)=.299, p=.589,
partial η

2
=.010). As we intentionally balanced the ability levels

of programmers between conditions, is unsurprising that we did
not see a significant difference in this task. In the no-IC
condition, programmers typically gave this task priority and
completed it before working on the interaction flow. For Task 2
completion, however, a chi-square test revealed a significant
difference between conditions (χ

2
(1) = 18.286, p<.001, φ=.758).

Only 19% of programmers in the no-IC condition
completed the second task, compared with 94% in the with-IC
condition. Programmers in the no-IC condition were usually
too busy building the interaction flow to work on this lower-
priority programming task.

Finally, a one-way ANOVA was conducted for the number
of unique utterances, revealing a significant main effect
(F(1,30)=12.760, p=.001, partial η

2
=.298). These results

showed significantly more utterances in the with-IC condition,
indicating that the increased involvement of the designer
enabled the creation of more complex interaction flows.

VI. DISCUSSION AND CONCLUSIONS

A. Observations

During our experiment, different teams used our design
framework with varying degrees of success. One thing we
observed is that a clear understanding of the interface between
the programming side and the interaction design is critical for
productive collaboration. Some designers using IC
misunderstood the functionality of the robot‟s behaviors, for
example, confusing the LookForFace behavior and the
faceDetected variable. These designers built flows with
redundant or incorrect use of behaviors.

Figure 10. Examples of flow organization.

All teams in the with-IC condition used sequences, but
some were more effective than others. Many designers built
nearly the entire flow within a single sequence, e.g. Fig. 10
(upper left). Others took advantage of the graphical freedom in
IC to arrange the elements into visual groups, e.g. Fig. 10
(upper right). More than half of the teams organized their flows
by using top-level sequences, e.g. Fig. 10 (bottom). The most
successful teams used sequences extensively (the best used 11,
while most used 5 or fewer) to encapsulate tasks like asking
confirmation questions or confirming the customer‟s presence.

In some of the more successful no-IC cases, programmers
took strong initiative in the interaction design, using the
designer‟s flow as a rough guideline since the designer did not
have a clear understanding of what was difficult or easy to
implement. The best programmers were able to generate logical
flows equivalent to average-performance flows in the with-IC
condition, but their flows lacked advanced features like checks
to see if the customer had moved, variation in utterances, and
small talk. These features were present in many with-IC flows.

Many unsuccessful no-IC cases failed because of mistakes
in software design. As text is a linear medium, it can be hard to
see the structure of an interaction flow just by looking at source
code. Without a visualization of the structure, many
programmers forgot to handle important contingencies, such as
the case when no speech recognition result is received.

B. Scalability

Scalability is a concern for any programming environment,
and while our results show that the state-based approach we use
for dialog management is useful for simple flows, its scalability
and flexibility remain important questions.

We have found this approach useful for long, mostly-linear
flows, and if the robot guides the interaction by asking
questions, people‟s responses are usually predictable. We have
also found it to be effective for interactions where the robot
needs to make simple responses to a large number of keywords,
e.g. providing directions to one of 90 places in a shopping mall.

The state-based approach is not as effective when the robot
needs to remember interaction history, e.g. offering to explain
only information it has not already presented. In these
situations the complexity of the flow rises exponentially with
the amount of state that needs to be remembered. Such

19.4

46.1

0

20

40

60

80

100

no IC with IC

Interactive Evaluation

5.44

8.91

0

2

4

6

8

10

12

no IC with IC

Checklist Score

83% 85%

0%

20%

40%

60%

80%

100%

no IC with IC

Face Tracking
Accuracy

19%

94%

0%

20%

40%

60%

80%

100%

no IC with IC

Second Task
Completion

18.9

30.5

0

10

20

30

40

no IC with IC

Unique
Utterances

situations are fairly common in social interactions, so for some
applications we have developed custom behavior modules to
handle interaction history.

So far, the current balance between functionality and ease-
of-use has been sufficient for our applications. No doubt this
balance will change in the future as applications become more
complex. However, the principle of enabling designers and
programmers to collaborate through parallel development will
only become more important as complexity increases.

C. Conclusions

In this paper we have presented a novel interaction design
framework which enables non-programmers and programmers
to work in parallel to develop interactive applications for social
robots. In our experiment we have validated that this new
design approach increases efficiency and application quality.

Structuring the development process to reflect the unique
roles of designers and programmers should help to increase
efficiency and enable both programmers and designers to
produce higher quality work, making this a first step towards a
scalable development process that will eventually be applicable
to commercial social robotics applications.

REFERENCES

[1] M. L. Walters, et al.. “Human approach distances to a mechanical-
looking robot with different robot voice styles,” Proc. 17th IEEE
International Workshop on Robot and Human Interactive
Communication (ROMAN), pp. 707-712, 2008.

[2] K. Dautenhahn, et al., How may I serve you?: a robot companion
approaching a seated person in a helping context, Proceedings of the 1st
ACM SIGCHI/SIGART conference on Human-robot interaction, 2006.

[3] B. Mutlu, T. Shiwa, T. Kanda, H. Ishiguro, and N. Hagita, “Footing in
human-robot conversations: how robots might shape participant roles
using gaze cues,” 4th ACM/IEEE International Conference on Human-
Robot Interaction, pp.61-68, 2009.

[4] J. Kramer and M. Scheutz, “Development environments for autonomous
mobile robots: a survey, autonomous robots,” Autonomous Robots, vol.
22(2), pp. 101-132, 2007.

[5] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choreographe: a
graphical tool for humanoid robot programming,” in Proc. 18th IEEE
Intl. Symposium on Robot and Human Interactive Communication, pp.
46-51, Toyama, Japan, Sept. 27-Oct. 2, 2009

[6] B. Erwin, M. Cyr, and C. Rogers, “LEGO engineer and ROBOLAB:
Teaching engineering with LabVIEW from kindergarten to graduate
school.” Intl. Journal of Engineering Education, 16(3), pp. 1-12, 2000.

[7] A. van Breemen, “Scripting technology and dynamic script generation
for personal robot platform,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3561-3566, 2005.

[8] M. Nakano, et al., “A two-layer model for behavior and dialogue
planning in conversational service robots,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1542-1548, 2005.

[9] M. F. McTear, “Modelling spoken dialogues with state transition
diagrams: experiences with the CSLU toolkit,” in Proc. 5th
International Conference on Spoken Language Processing (ICSLP'98),
pp. 1223-1226, Sydney, Australia, 1998.

[10] M. F. McTear, “Spoken dialogue technology: enabling the
conversational user interface,” ACM Computing Surveys, vol. 34 (1),
pp.90-169, March 2002.

[11] M. Dragone, T. Holz, B.R. Duffy, G.M.P. O‟Hare, “Social Situated
Agents in Virtual, Real and Mixed Reality Environments,” Int. Conf. on
Intelligent Virtual Agents, 2005.

[12] H. Asoh, et al. “A spoken dialogue system for a mobile office robot,”
6th European Conference on Speech Communication and Technology,
pp. 1139-1142, 1999.

[13] T. Matsui, et al., “Integrated natural spoken dialogue system of Jijo-2
mobile robot for office services,” Proceedings of the Sixteenth National
Conference on Artificial Intelligence, pp.621-627, 1999.

[14] F. Doshi, N. Roy, “Efficient model learning for dialog management,”
ACM/IEEE Intl. Conf. on Human-Robot Interaction, pp.65-72, 2007.

[15] N. Roy, J. Pineau, and S. Thrun, “Spoken dialogue management using
probabilistic reasoning,” 38th Annual Meeting of the Association for
Computation Linguistics, 2000.

[16] J. G. Trafton, M. D. Bugajska, B. R. Fransen, and R. M. Ratwani,
“Integrating vision and audition within a cognitive architecture to track
conversations,” 3rd ACM/IEEE Annual Conference on Human-Robot
Interaction, pp.201-208, 2008.

[17] M. Scheutz, P. Schermerhorn, and J. Kramer, “The utility of affect
expression in natural language interactions in joint human-robot tasks,”
1st ACM/IEEE Annual Conference on Human-Robot Interaction, pp.
226-233, 2006.

[18] M. Kleinehagenbrock, J. Fritsch, and G. Sagerer, “Supporting Advanced
Interaction Capabilities on a Mobile Robot with a Flexible Control
System,” IEEE/RSJ Int’l Conference on Intelligent Robots and Systems,
pp.3649-3655, 2004.

[19] S. Li, B. Wrede, and G. Sagerer, “A dialog system for comparative user
studies on robot verbal behavior,” IEEE Int. Symposium on Robot and
Human Interactive Communication (RoMan 2006), pp.129-134, 2006.

[20] A. Clodic, R. Alami, V. Montreuil, S. Li, B. Wrede, and A. Swadzba, ”A
study of interaction between dialogue and decision for human-robot
collaborative task achievement,” 16th IEEE International Symposium on
Robot and Human interactive Communication, pp. 913-918, 2007.

[21] O. Lemon, A. Bracy, A. Gruenstein, and S. Peters, “The WITAS multi-
modal dialogue system I,” European Conf. on Speech Communication
and Technology, pp. 1559–1562, Aalborg, Denmark, 2001.

[22] J. Peltason, B. Wrede, “Modeling human-robot interaction based on
generic interaction patterns,” AAAI Fall Symposium: Dialog with Robots.
Arlington, VA, USA: AAAI Press; 2010.

[23] M. Denecke, “Rapid prototyping for spoken dialogue systems,” Proc. of
the 19th international conference on Computational linguistics, p.1-7,
August 24-September 01, 2002, Taipei, Taiwan.

[24] B. Scassellati, “Investigating models of social development using a
humanoid robot,” Biorobotics, MIT Press, 2000.

[25] T. Kanda, H. Ishiguro, M. Imai, and T. Ono, “Development and
evaluation of interactive humanoid robots,” Proceedings of the IEEE,
vol.92 (11), pp. 1839-1850, 2004.

[26] B. Mutlu, J.K. Hodgins, and J. Forlizzi, “A storytelling robot: modeling
and evaluation of human-like gaze behavior,” IEEE-RAS International
Conference on Humanoid Robots, pp. 518-523, 2006.

[27] C. Breazeal, et al., “Effects of nonverbal communication on efficiency
and robustness in human-robot teamwork,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 708-713, 2005.

[28] C. L. Sidner, C.D. Kidd, C. Lee, and N. Lesh, “Where to look: a study of
human-robot engagement,” Proc. of the 9th International Conference on
Intelligent User Interfaces, pp. 78-84, 2004.

[29] C.L. Sidner, et al., “The effect of head-nod recognition in human-robot
conversation,” 1st ACM/IEEE Annual Conference on Human-Robot
Interaction, pp. 290-296, 2006.

[30] Y. I. Nakano, G. Reinstein, T. Stocky, and J. Cassell, “Towards a model
of face-to-face grounding,” Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics, pp. 553-561, 2003.

[31] C. Shi et al., “Easy use of communicative behaviors in social robots,”
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, 2010.

[32] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. 2(1), pp. 14-23, 1986.

[33] S. Satake, et al., “How to approach humans? Strategies for social robots
to initiate interaction,” 4th ACM/IEEE International Conference on
Human-Robot Interaction, pp.109-116, 2009.

[34] http://www.youtube.com/watch?v=4Zi4NzzEfbQ

[35] T. Shimizu et al., “Spontaneous dialogue speech recognition using cross-
word context constrained word graph,” Proc. ICASSP, pp.145-148, 1996.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4600750
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4600750
http://portal.acm.org/citation.cfm?id=1121272
http://portal.acm.org/citation.cfm?id=1121272
http://portal.acm.org/citation.cfm?id=1514109
http://portal.acm.org/citation.cfm?id=1514109
http://portal.acm.org/citation.cfm?id=1514109
http://www.springerlink.com/content/v57531724h624440/
http://www.springerlink.com/content/v57531724h624440/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5326209
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5326209
http://www.ijee.ie/contents/c160300.html
http://www.ijee.ie/contents/c160300.html
http://www.ijee.ie/contents/c160300.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545522
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545522
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545198
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545198
http://www.isca-speech.org/archive/icslp_1998/i98_0545.html
http://www.isca-speech.org/archive/icslp_1998/i98_0545.html
http://portal.acm.org/citation.cfm?doid=505282.505285
http://portal.acm.org/citation.cfm?doid=505282.505285
http://portal.acm.org/citation.cfm?id=1099291
http://portal.acm.org/citation.cfm?id=1099291
http://www.isca-speech.org/archive/eurospeech_1999/e99_1139.html
http://portal.acm.org/citation.cfm?id=315411
http://portal.acm.org/citation.cfm?id=315411
http://portal.acm.org/citation.cfm?id=1228726
http://portal.acm.org/citation.cfm?id=1075231
http://portal.acm.org/citation.cfm?id=1075231
http://portal.acm.org/citation.cfm?id=1349849
http://portal.acm.org/citation.cfm?id=1349849
http://portal.acm.org/citation.cfm?id=1121281
http://portal.acm.org/citation.cfm?id=1121281
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=1389982
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=1389982
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=1389982
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4107797
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4107797
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4415214
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4415214
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4415214
http://www.isca-speech.org/archive/eurospeech_2001/e01_1559.html
http://www.isca-speech.org/archive/eurospeech_2001/e01_1559.html
http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/view/2208
http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/view/2208
http://portal.acm.org/citation.cfm?id=1072375
http://cognet.mit.edu/library/books/view?isbn=026273141X
http://cognet.mit.edu/library/books/view?isbn=026273141X
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1347463
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1347463
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4115652
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4115652
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545011
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545011
http://portal.acm.org/citation.cfm?id=964458
http://portal.acm.org/citation.cfm?id=964458
http://portal.acm.org/citation.cfm?id=1121291
http://portal.acm.org/citation.cfm?id=1121291
http://portal.acm.org/citation.cfm?id=1075166
http://portal.acm.org/citation.cfm?id=1075166
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5650128
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1087032
http://portal.acm.org/citation.cfm?id=1514117
http://portal.acm.org/citation.cfm?id=1514117
http://www.youtube.com/watch?v=4Zi4NzzEfbQ
http://portal.acm.org/citation.cfm?id=1256462
http://portal.acm.org/citation.cfm?id=1256462

