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 

Abstract— Teleoperation of multiple robots by a single operator 

has been studied extensively for applications such as search and 

navigation; however, this concept has never been applied to the 

field of social, conversational robots. In this paper we explore the 

unique challenges posed by the remote operation of multiple social 

robots, where an operator must perform auditory multitasking to 

assist multiple interactions at once. It describes the general system 

requirements in four areas: social human-robot interaction design, 

autonomy design, multi-robot coordination, and teleoperation 

interface design. Based on this design framework, we have 

developed a system in which a single operator can simultaneously 

control four robots in conversational interactions with users. 

Key elements of our implementation include a control 

architecture enabling the scripting of conditional behavior flows 

for social interaction, a graphical interface enabling an operator to 

control one robot at a time while monitoring several others in the 

background, and a technique called “Proactive Timing Control,” 

an automated method for smoothly interleaving the demands of 

multiple robots for the operator’s attention. We also present 

metrics for describing and predicting robot performance, and we 

show experimental results demonstrating the effectiveness of our 

system through simulations and a laboratory experiment based on 

real-world interactions. 

 
Index Terms— Adjustable autonomy, communication robots, 

human-robot interaction, multiple robots, networked robots, 

single-operator multiple-robot systems, social robots, supervisory 

control, teleoperation of social robots 

I. INTRODUCTION 

S rapid progress is being made on all frontiers of robotics 

technology, many of the key components necessary for 

developing socially-situated autonomous robot systems are 

falling into place. Field trials of social robots placed in 

real-world environments such as museums [1, 2, 3], schools [4, 
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5, 6], and train stations [7], have shown great success and 

provided valuable insights into real-world social phenomena 

which cannot be observed in the laboratory.  

Yet, inspiring and exciting as it is to see robots operating in 

the field, the inescapable reality is that social dynamics and 

recognition problems are complex, and today's technology is 

not yet capable of supporting a fully-autonomous robot playing 

a humanlike role in society. Any robot will eventually find itself 

in unanticipated circumstances, where failure to respond 

appropriately could lead to socially awkward, money-losing, or 

even dangerous situations. 

 
Fig. 1.  A robot providing route guidance in a shopping mall. 

 

A field trial we recently conducted at a Japanese shopping 

mall [9] illustrates an example of a social robot application. We 

placed a humanoid robot in a central public space in the 

shopping mall for several hours a day, where it chatted with 

visitors and provided information and route guidance to 

locations within the mall. Customers were excited by the 

engaging interactions, and people crowded around the robot 

every day, waiting for a chance to talk with it (Fig. 1). 

Although a large part of the attraction of social robots is their 

ability to “understand” natural language and engage people 

interactively, this task is still largely beyond the capabilities of 

today’s robots to achieve without a human operator. Field trials 

using robots in social settings have often involved some degree 

of remote control, referred to as the “Wizard of Oz" (WoZ) 

method [10, 11]. Although pure teleoperation can be valuable 

for studying human reactions to robot behaviors, it does not 

necessarily represent progress towards creating 

fully-autonomous or highly-autonomous social robot systems. 

With real-world semi-autonomous robot applications as a 

goal, our long-term approach is to begin with a 

partially-autonomous system, and to steadily decrease the role 

of the operator over time with improvements in robot 

technology. As robot autonomy increases, it will be possible for 

one operator to control several robots. The operator-to-robot 
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ratio could be considered as one measure of the degree of 

autonomy of a robot system. 

Seen from a commercial perspective, a fleet of ten service 

robots controlled by a single human operator would be more 

economically viable than the same number of robots requiring a 

team of twenty operators, and even highly autonomous 

industrial robots generally have a human in the loop in a 

supervisory role. Thus, while full autonomy for social robots is 

not yet feasible, partial autonomy with a low operator-to-robot 

ratio could enable social robot applications which would be 

otherwise impractical. 

In this paper, we address the unique challenges of 

single-operator-multiple-robot (SOMR) operation for the case 

of social robots. In Sec. III we present a framework in which we 

categorize and discuss the key issues in designing such a system. 

Based on this conceptual framework, we implemented a 

semi-autonomous robot control system for social interactions, 

enabling a single operator to monitor and control several 

communication robots at once. The details of our 

implementation and solutions to key problems are presented in 

Sec. IV. In the remainder of the paper, we present results 

showing the effectiveness of our system in simulation, as well as 

laboratory trials demonstrating that a single operator is able to 

successfully control up to four robots at once as they 

simultaneously engage in conversational interactions. 

II. RELATED WORK 

In this paper we are exploring semi-autonomous control of 

multiple robots for social human-robot interaction, by which we 

mean conversational interaction between a robot and one or 

more people. In other fields of robotics, such as 

search-and-rescue or space exploration, many aspects of both 

single- and multiple-robot teleoperation are active fields of 

research, but multiple-robot teleoperation has not yet been 

studied for social robots. 

A substantial amount of work has been done regarding levels 

of autonomy for teleoperated robots. The concept of “shared 

autonomy” describes a system in which a robot is controlled by 

both a human operator and an intelligent autonomous system, a 

concept which has been used in fields such as space robotics 

[12] and assistive robotics [13]. The concept of “adjustable 

autonomy”, also known as “sliding autonomy,” has also been 

studied, in which varying degrees of autonomy can be used for 

different situations [14]-[17]. 

Other teleoperation research has focused on control 

interfaces for teleoperation. A wide variety of teleoperation 

interfaces have been created for vehicle control [18],[19], and 

the unique problems of controlling body position in humanoid 

robots have also been studied [20]. 

Several aspects of simultaneous control of multiple robots 

have also been studied. Hill and Bodt presented field studies 

observing the effects of controlling multiple robots on operator 

workload [21]. Sellner et al. studied the situational awareness of 

an operator observing various construction robots in sequence 

[22], and Ratwani et al. used eye movement cues to model the 

situation awareness of an operator supervising several UAV’s 

simultaneously [23]. 

 
Fig. 2.  General overview of multi-robot control system showing key design 

areas. 

A key issue in multiple-robot teleoperation is the concept of 

“fan-out,” which describes the number of robots an operator can 

effectively control [24]. Crandall and Goodrich have laid a 

theoretical basis for the modeling of SOMR teleoperation, 

defining metrics such as Interaction Time (IT) and Neglect 

Tolerance (NT) to help with calculation of robot fan-out and 

predicting system performance [25]. Thus far, studies of fan-out 

in multiple-robot teleoperation have focused on tasks such as 

search and navigation for mobile robots [26], or target selection 

for UAVs [27], but not social human-robot interaction. 

In this paper we will build upon this research to define a new 

application domain: the teleoperation of multiple robots for 

social human-robot interaction tasks. In doing so, we aim to 

identify ways in which existing SOMR teleoperation principles 

can be applied to social robots, and to examine ways in which 

social robots differ from traditional systems.  

III. ISSUES IN TELEOPERATION OF MULTIPLE SOCIAL ROBOTS 

The teleoperation of multiple robots for social interaction is 

in some ways analogous to SOMR teleoperation for 

conventional robots, and in other ways presents new challenges. 

Extensive research has been done on teleoperation for tasks 

such as robot navigation, and we have summarized how the 

issues in teleoperation for conversational social interaction 

differ from those regarding many kinds of teleoperation for 

navigation (Table 1). Of these differences, perhaps the most 

significant is the time-critical aspect of conversational 

interaction. Time-criticality itself is not unique to social 

robotics, and time-critical tasks exist, for example, in UAV 

teleoperation; however in most SOMR systems, robots can buy 

time by “idling” or “loitering” until an operator becomes 

available, whereas a robot waiting in silence during a 

conversation would quickly cause failure of the interaction. 

Thus time-criticality is a central factor affecting several of the 

key issues in teleoperation of multiple social robots.  

Fig. 2 shows the general organization of a SOMR system for 

social human-robot interaction. In this paper we will use the 

terms “operator” and “customer” to describe the roles of 
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humans in the system. This choice of terms is not meant to 

preclude other roles of the humans in the system, e.g. 

teacher-student or doctor-patient, but is only used to avoid the 

ambiguity of the term “user”. 

 Four key design areas are identified in the system diagram in 

Fig. 2. The overall system requirements are driven by the target 

application, which in this case falls in the domain of social 

human-robot interaction. This area includes the design of the 

robot’s behavior and dialogue with the goal of creating 

comfortable, natural, and functional interactions between the 

robot and a customer. To create semi-autonomous robots which 

can do this, an important issue is autonomy design, that is, how 

operator commands can be reconciled with the autonomous 

components of the robot control system. Next, due to the 

time-criticality of social interactions, multi-robot 

coordination is necessary to manage the attention of the 

operator between robots, and to reduce conflicts between 

demands for the operator’s time. Finally, teleoperation 

interface design is necessary to enable interaction between the 

operator and the robot, providing the operator with situation 

awareness and controls for operating the robot. 

 In this section, we will present design considerations in these 

four areas and propose metrics for quantifying important 

characteristics of SOMR systems for social interaction. 

A. Social Human-Robot Interaction 

The target application of social human-robot interaction 

drives the design of the entire robot system. As the field of HRI 

covers a wide range of scenarios, it is important to clearly define 

the target of this paper. 

In this study we are considering conversational humanlike 

interactions. The task of the robot is primarily dialogue-based, 

although nonverbal communication and gestures such as 

pointing may also be essential interaction components. 

Some examples of this type of interaction might include a 

robot shopkeeper which provides information about various 

products, an information booth robot which gives directions and 

answers questions in a shopping mall, a tour-guide robot which 

explains exhibits in a museum, or a public relations robot which 

greets people and invites them to visit a shop. 

In these examples, interactions can be expected to follow a 

flow which includes alternating phases: one in which a person is 

asking a question or giving information to the robot, and one in 

which the robot responds with some explanation or directions.  

In the first type of phase, it is the customer’s ‘turn’ to drive 

the conversation, and the robot (or operator) must correctly 

recognize the customer’s utterances in order to respond 

appropriately. We call this type of phase a critical section, 

because a recognition failure in this phase is likely to result in a 

failure of the interaction, such as a customer becoming 

frustrated with the robot and walking away.  

In the second type of phase, it is the robot’s ‘turn’ in the 

conversation, and the customer is in a listening role.  

Responding to inputs from the customer is less important during 

this phase, which we call a non-critical section. This is not to 

say that the customer will never interrupt the robot, but such 

interruptions are expected to be the exception rather than the 

rule. Although recognition failures may occur in this phase, we 

assume that in comparison with critical sections, there is a lower 

likelihood that they will result in interaction failures. 

Understanding this pattern of critical and noncritical sections 

defined by the social interaction design helps to enable the 

coordination of operator attention between multiple robots, as 

we will explain later. 

B. Autonomy Design 

In semi-autonomous social robot systems, it is important to 

define how an operator should interact with the autonomous 

components of the robot’s control system. Generally speaking, 

an operator can direct high-level tasks or identify errors that the 

system cannot detect autonomously. For social robots, many 

necessary functions, such as tracking human positions or 

presenting information through speech and gesture, can be 

performed autonomously using available technology. Some 

TABLE 1. DIFFERENCES IN TELEOPERATION BETWEEN NAVIGATION (FUNDAMENTAL TASKS FOR MOBILE ROBOTS [28]) AND SOCIAL INTERACTION. 

 Navigation  Social interaction (this study) New problems in social interaction 

Operator’s role Obstacle avoidance. 

Giving current position, 

path, goals. 

Understanding the user’s 

intention and providing required 

service 

 

Source of input to 

operator 

Scenery + Map Audition (+scenery) Cannot monitor multiple sources 

simultaneously 

Operator’s output  

(low level control) 

Velocity Utterance, gesture, +(body 

orientation and position) 

Typing and controlling many DOFs 

for gesturing are very slow 

Operator’s output 

(abstracted control) 

Position (destination) Behavior (combination of 

utterance and gesture) 

Difficult to prepare for minor cases in 

advance 

Consequence of 

ignoring errors caused 

by autonomy 

Crash into obstacle, or 

lose the robot. 

Person might get lost, buy wrong 

product, or receive wrong 

service. 

Definitely we should not ignore errors 

in either case. 

Can robots wait after an 

error detected? 

Yes, in most cases. No. Users might soon leave if a 

robot stops. 

An operator should take control of the 

robot immediately. 

Can robots anticipate the 

timing of possible error? 

Not usually. Yes Most errors are from speech 

recognition, often after the robot asks 

a question. 
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core background processes, such as emotional dynamics, can 

also be automated for social robots [29]. It is in the recognition 

and interpretation of verbal and nonverbal communication and 

the ability to make common-sense judgments based on an 

understanding of context that an operator can add the greatest 

value.  

For example, an elderly person in a shopping mall who is 

holding a map and looking around might need route guidance 

from the robot; on the other hand, a young person in a plaza 

looking around in a similar manner might just be looking for 

friends and not need the service. Although a human operator 

could easily distinguish between these two cases using intuition, 

visual cues, and implicit social context, such a recognition task 

would be quite difficult for a robot to perform autonomously.  

An operator can provide input to a semi-autonomous system 

at several levels. Consider a simple framework for robot 

control, in which developers create sense-plan-act elements 

based on a pre-assumed world model. Fig. 3 shows an example 

of such a system, in which the robot can perform abstracted 

behaviors composed of low-level actions such as speech and 

gesture. These behaviors are chosen by decision logic, based on 

the results of autonomous sensor recognition. 

In such a system, three categories of problems tend to occur, 

which define the three primary tasks of an operator. 

1) Uncovered situations 

The richness and diversity of human behavior makes it 

difficult to create a predictive model of the world for social 

interactions. This can lead to many uncovered situations, in 

which a robot does not have appropriate rules or behaviors 

implemented to act autonomously. Uncovered situations are of 

particular concern for systems which interact with humans. 

Uncovered situations motivated the original use of WoZ, 

where a dialog system was controlled by a human operator to 

collect necessary dialog elements [30]. By monitoring the 

interaction, an operator can provide additional information to 

the system and improve its world model. The assumption behind 

this technique is that the robot can ultimately cover all situations 

after collecting a sufficiently complete world model. 

1) Incomplete autonomy 

Even assuming a good model of the world, there are still 

cases when we cannot prepare all the necessary sense-plan-act 

elements. In these cases an operator can be used as a substitute 

for incomplete autonomy and replace those individual 

elements. Many WoZ studies in HRI are of this type [31]. 

An example of replacing a sense element is speech 

recognition. Today’s speech recognition technologies are 

unreliable in noisy environments, as observed by Shiomi et al. 

in field trials [32]. It is thus not currently possible to automate 

this sensing task. However, an operator can be employed to 

listen to the audio stream and manually input the recognized 

utterances into the system. Using those inputs, the robot can still 

perform the plan and act elements autonomously. Other 

examples in this class could include identifying a person or 

object, or monitoring the social appropriateness of a robot’s 

actions by observing people’s reactions to the robot. 

 
Fig. 3.  Autonomy and operator control tasks for sense-plan-act elements in a 

semi-autonomous robot control system. 

 

An operator could likewise replace a plan element. If a 

robot’s action requires particular expertise or authority, such as 

that of a doctor, technician, soldier, or law enforcement officer, 

an operator may be required for this step. Here the robot may be 

able to sense the environment and act on it, but lack the 

authority or accountability to make the decision to act. 

For replacing an act element, an example could be a difficult 

actuation task like grasping. The robot might be able to identify 

an object to grasp and make the decision to grasp it, but need 

assistance in actually carrying out the grasping task [33]. 

Note that for this style of teleoperation, the system can often 

prompt the operator to perform some action. The operator acts 

as a “black box” in the system, performing some defined 

processing task on demand, like any other module in the system. 

2) Unexpected errors 

Finally, it is possible that even if we have prepared a good 

world model and developed appropriate sense-plan-act 

elements, the system may not always work as intended. That is, 

unexpected errors may occur during autonomous operation. 

In this case, an operator needs to monitor the robot to identify 

possible errors. In the teleoperation tasks described above, the 

operator’s focus is on the environment and people interacting 

with the robot, but when monitoring for errors the primary focus 

is on the performance and behavior of the robot itself. 

C. Multi-robot Coordination 

As stated in Table I, we assume an operator can only correct 

errors or provide active support for one robot at a time. 

Particularly in the case of speech recognition, it is extremely 

difficult for an operator to concentrate on two or more 

conversations at once. This restriction makes the operator’s 

attention a limited resource. 

In this paper we will model a robot’s interaction as consisting 

of critical sections, where there is a high risk of interaction 

failure and thus a high likelihood that operator assistance will be 

needed, and non-critical sections, which can safely be 

performed autonomously. Critical sections tend to occur when 
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the actions of the robot depend strongly on recognition of inputs 

from the customer, and thus the consequences of a recognition 

error are severe. Critical sections can also occur when there is a 

high probability that an uncovered situation will arise. 

Note that we consider errors in sensor recognition to be 

equally likely to occur in critical and non-critical sections. 

However, a recognition error is much more likely to result in 

interaction failure in a critical section than in a non-critical 

section. To prevent interaction failures, it is desirable for an 

operator to be monitoring a robot during critical sections. 

A fundamental conflict arises when two or more robots 

compete for operator attention by entering critical sections at 

the same time. As noted above, social interactions are 

time-critical. While the operator serves one robot, the customer 

interacting with the other robot is made to wait, which will have 

a negative impact on the quality of service, and possibly even 

cause failure of the interaction. 

In Sec IV-C, we will propose a mechanism for coordinating 

the interactions of the robots to eliminate such conflicts. 

D. Teleoperation Interface Design 

An operator has two tasks to perform: first, supervisory 

monitoring of all robots to identify unexpected situations, and 

second, assisting individual robots’ recognition, planning, and 

actuation. Supporting both of these tasks provides a 

considerable challenge for the user interface design. 

Both situation awareness and actuation requirements for the 

user interface differ for these two tasks as follows.  

1) Controlling individual robots 

When controlling a single robot, the operator needs to be 

aware of the robot’s individual situation – with whom the robot 

is interacting, what that person is saying, and what the robot is 

doing. For simple systems, such as an information-providing 

robot in a shopping mall, this immediate information may be 

sufficient for the robot’s interactions. For more elaborate 

systems where the robot has a long-term relationship with the 

customer, long-term interaction history or personal information 

about that customer might be required. 

This interface also requires actuation controls for correcting 

sensor recognition, directing behaviors, and performing 

low-level control such as entering text for the robot to speak in 

uncovered situations. 

2) Monitoring multiple robots 

When acting in a supervisory role and monitoring multiple 

robots, the operator needs to identify and react to unexpected 

problems in a timely manner. A summary of the state 

information about each robot should be presented to the 

operator in such a way as to make errors and unusual behavior 

easily recognizable. 

 As stated in Table 1, an understanding of the conversation 

flow can make it possible to anticipate when errors in 

recognition are likely to happen. The highest risk of recognition 

error occurs during critical sections, so alerting the operator of 

which robots are in or entering critical sections can help manage 

the operator’s attention most effectively. 

 

TABLE 2. TASK DIFFICULTY METRICS 

Metric Comments 

Recognition 

Accuracy (RA) 

Limited by technology; higher RA 

increases fan-out 

Situation Coverage 

(SC) 

Limited by scenario predictability; 

higher SC increases fan-out 

Critical Time Ratio 

(CTR) 

Determined by interaction design; 

lower CTR increases fan-out. 

 

It should also be noted that a summary of the robot’s state 

information might not be sufficient for the operator to 

accurately identify some errors, so it may be important for the 

operator to periodically examine the detailed state information 

for individual robots as well. 

E. Task Difficulty Metrics 

Finally, it is valuable to have metrics quantifying the 

capability of the robot system. For multiple-robot systems, a key 

quantity is the number of robots a single operator can manage, 

known as “fan-out”. High fan-out can be achieved if the robots 

can operate with high reliability without the support of an 

operator, whereas fan-out will be much lower if errors are likely 

to occur, for example, due to poor sensor recognition or high 

task difficulty. Thus, to predict fan-out, it is important to have 

metrics which describe the likelihood of error while the robot is 

unsupervised. In the terminology of Crandall and Cummings, 

such metrics are classified as “Neglect Efficiency” metrics [26]. 

In this section, we will define three neglect efficiency metrics 

reflecting the risk of interaction errors occurring while the robot 

is unsupervised. These metrics are summarized in Table 2. 

1) Recognition Accuracy 

Sensor recognition accuracy (RA) is a fundamental concern 

for robots in nearly every field. This is also true for social 

robots, as recognition of the nuances of communicative signals 

such as speech, gesture, intonation, and emotion in social 

interaction can be particularly challenging. An estimate of RA 

can help predict the frequency of unexpected errors in the 

“sense” element of the robot’s control architecture.  

The RA of a system should be evaluated in the context of its 

intended application. Visual recognition accuracy varies greatly 

with lighting conditions, and audio recognition accuracy is 

dependent on levels of ambient noise. Variability in interactions 

can also affect RA. For example, a robot may perform excellent 

speech recognition while answering a predictable set of 

questions in an office setting, yet quite poorly in recognizing the 

unrestricted utterances and emotional signals of children telling 

stories to the robot at a day-care center.  

From a designer’s perspective, increasing a robot’s RA 

through better sensors or better recognition technology can 

reduce the need for operator intervention, which can increase 

the number of robots a single operator can control. The 

designer’s freedom, however, is typically limited by available 

technology, and thus RA cannot be increased without bound. 
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TABLE 3. INTERACTION SEQUENCE 

# Phase Criticality Duration 

1 Simple greeting Non-critical 2s 

2 Self-introduction Non-critical 3s 

3 Chat behavior Non-critical Variable 

4 Offer guidance Critical 1s 

5 Wait for question Critical 2-10s 

6 Provide guidance Non-critical 10-15s 

7 Farewell Non-critical 5s 

 

2) Situation Coverage  

The next metric we propose is Situation Coverage (SC), 

which describes the completeness of the “plan” and “act” 

elements in the robot system. We define a situation to be 

“covered” if the system would autonomously execute the 

correct behavior given perfect sensor inputs. Using this 

definition, SC is defined as the percentage of situations 

encountered by the robot that are covered. 

To be precise, there are actually two aspects to SC, 

corresponding to the “plan” and “act” elements of the robot 

control system. SCact describes the percentage of situations 

encountered by the robot for which an appropriate action has 

been prepared. SCplan then describes the percentage of situations 

for which the decision logic has been developed which will 

trigger those actions. 

For example illustrating the difference between SCact and 

SCplan, consider a robot system which includes an implemented 

action to direct a customer to a supermarket (i.e. covered under 

SCact). Assume decision logic has been implemented to execute 

this action only if a customer asks where the supermarket is. If a 

customer asks this robot where to buy broccoli, but the robot is 

not programmed to react to the word “broccoli”, this situation is 

not covered under SCplan, and is thus not considered to be a 

covered situation overall, even though it is covered under SCact. 

Overall, SC describes a theoretical limit of the system’s 

capacity to operate autonomously. In an ideal system with no 

recognition errors or unexpected errors, a system with an SC of 

70% will be able to successfully complete 70% of its tasks 

autonomously, and will require operator intervention 30% of 

the time. When errors are considered, real autonomous 

performance will fall somewhat below 70%, so SC is useful for 

describing the upper bound of the system’s possible 

performance, or conversely, a lower bound on the fraction of 

time during which operator support may be necessary. 

In application design, SC is more of a controllable variable 

than RA. Whereas RA is subject to technological limitations, 

SC can be increased through human effort. By spending more 

time researching potential situations the robot may encounter 

and developing the decision logic and actions to respond to 

those situations, it is possible to increase a robot’s SC. 

Given the complexity and variety of real social situations, it is 

usually impractical to attempt to achieve 100% SC. Instead, an 

effective strategy for use of partial autonomy would be to design 

logic and actions to cover the most common situations, perhaps 

achieving an SC of 90%, and then to rely on operator assistance 

for the remaining situations. 

3) Critical Time Ratio  

The third metric we will introduce is the Critical Time Ratio 

(CTR). This is defined as the ratio of the amount of time spent in 

critical sections to the total duration of an interaction. For tasks 

with a low CTR, the likelihood of two robots entering a critical 

section at the same time is correspondingly low, and thus timing 

control behaviors will seldom be necessary. Tasks with a high 

CTR are more likely to conflict, which can lead to higher wait 

times for users and a heavier workload on the operator. 

CTR is related to the concept of Robot Attention Demand 

(RAD) presented by Olsen et al. [34]. RAD represents the 

fraction of total time that human attention is required. CTR, on 

the other hand, only describes the pattern of critical and 

non-critical sections. The degree to which operator attention is 

required during these critical sections is dependent upon the 

overall risk of failure, which is in turn based on RA and SC. 

For a designer, it is possible to achieve higher fan-out by 

creating interactions with a low CTR, e.g. by increasing the 

durations of non-critical sections and minimizing the number of 

critical sections in the interaction flow. However, this must be 

done carefully, as reducing CTR also runs the risk of reducing 

the robot’s responsiveness to the customer, and thus reducing 

the quality of the human-robot interaction. 

IV. IMPLEMENTATION 

Using the principles presented in this paper, we developed a 

system for the teleoperation of multiple robots for social 

interactions.  

In this section we will present the implementation of our 

system, addressing each of the four design areas presented in 

Fig. 2: social human-robot interaction, autonomy design, 

multi-robot coordination, and teleoperation interface design. 

Finally, we will present an example of how an operator would 

interact with such a system while controlling multiple robots. 

A. Social Human-Robot Interaction 

The interaction flow we developed for this study was based 

on interactions used in our field trials in a shopping mall. Table 

3 shows the sequence of conversation phases and their 

durations. When the robot detected a person in front of it, it 

would greet the person (1), then introduce itself and explain that 

it can give directions to locations in the shopping mall (2). After 

this, the robot would briefly chat about some topic, usually 

related to current events in the shopping mall or the robot’s 

“experiences” at various shops (3).  

As noted earlier, critical sections include situations where a 

response from the user is expected, whereas non-critical 

sections include tasks such as greeting, talking, and giving 

directions, where the robot is primarily providing information. 

The critical sections in our flow consist of the robot asking 

where the customer would like to go (4), and then waiting for the 

customer’s response (5).  

After the question has been asked, the robot gives guidance 

(6), then says goodbye to the customer (7). All of these phases 

are considered noncritical. 
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B. Autonomy Design 

For this study, we created a semi-autonomous robot control 

architecture which enables an operator to provide commands 

and assistance to an otherwise autonomous robot system. 

1) Robot Platform 

We implemented our architecture on Robovie II, a humanoid 

robot platform developed for human-robot interaction research 

[21]. It is capable of humanlike expressions with a head that can 

be moved with 3 degrees of freedom (DOF), arms with 4 DOF 

each, eye cameras with 2 DOF each, and a wheeled base for 

locomotion. Each robot also has color CCD eye cameras, a 

microphone, and several touch sensors.  

Audio from the robot’s onboard microphone is processed by 

an automatic speech recognition (ASR) system. In our field 

trials we have found the ASR system to be unusable because of 

ambient noise from background music, crowds, and 

announcements. In our quieter laboratory environment we 

found it to be more reliable, but accuracy was still observed to 

be around 60%. 

A common difficulty in speech recognition is that the 

signal-to-noise ratio goes down as distance between the 

microphone and the person speaking increases. Using headset 

microphones would certainly improve accuracy, but their use 

would be impractical for real robots interacting with customers 

in the field. 

2) Robot behavior control 

The behavior control system used in this study uses a 

software framework, illustrated in Fig. 4, in which short 

sequences of motions and utterances can be encapsulated into 

discrete units called “behaviors”. The programmer then defines 

a set of transition rules called “episodes” which specify 

transitions between behaviors [35]. These rules can be based on 

execution history, like the following examples: 

 

- If behavior A was executed, execute behavior B next. 

- If behavior B was executed immediately after behavior A, 

then execute behavior C next. 

 

The transitions can also be based on return values of the 

behaviors. This enables us to incorporate sensor information 

into the transitions. For example, a “check for customer” 

behavior could be defined which returns a 1 if a person is 

detected in front of the robot, and a 0 if no one is detected. This 

can be used to create a simple waiting loop, as follows: 

 

- If behavior A returns 0, repeat behavior A. 

- If behavior A returns 1, execute behavior B next. 

 

In practice, we have used this framework to create “listen” 

behaviors which return tens to hundreds of different values 

based on speech recognition results, as well as action-oriented 

behaviors such as a “shake hands” behavior which offers to 

shake hands and returns different values based on the reaction of 

the person. 

 
Fig. 4.  Behavior execution architecture. 

 

With this framework, if we theoretically assume no errors in 

sensor recognition and user behavior only within the limits of 

Situation Coverage, it is possible for the robot to execute any 

length of behavior chains with full autonomy. 

3) Operator intervention 

As described in Sec. III-B, the operator needs to be able to 

intervene in robot operation to deal with uncovered situations, 

incomplete autonomy, and unexpected errors. This can be 

achieved either through direct control of the robot at a high or 

low level, or through correcting the robot’s recognition. 

a) Direct Control 

Improvements in the efficiency of robot control can be made 

possible through layers of abstraction. For example, an operator 

could specify the individual joint angles for the robot’s arm at a 

low level, or achieve the same result by giving the robot a 

high-level command, e.g. “point to the left”. Most robot systems 

already incorporate abstractions like this. Joint angles can be 

grouped into poses, poses grouped into motions, motions and 

utterances grouped into behaviors, and so on. Similar 

abstractions have been used in teleoperation systems for 

navigation [15], [25]. 

As layers of abstraction are added to the system, the robot 

usually becomes able to function with a higher degree of 

autonomy, thus reducing the workload for the operator. When 

high-level functions are not prepared for a situation, the 

operator can use low-level functions instead. For example, if 

there is no behavior prepared for giving directions to a Japanese 

restaurant, an operator might directly type phrases for the robot 

to say and control the arms manually to point the way. 

a) Correcting Recognition 

An operator can also choose to correct a robot’s sensory 

recognition errors, rather than completely taking over control of 

its behaviors. For example, an operator observes a scene where 

a user says the words “Japanese restaurant”, but the speech 

recognizer fails to pick it up. If the robot has behaviors in place 

to react to those words, the operator can correct the robot’s 

speech recognition results and allow the robot to complete the 

interaction as usual. 

This kind of control requires less effort from the operator 

than taking over behavior control in order to generate a guiding 

behavior for directing the user to a Japanese restaurant.  

To give a simple example, when a robot in an idling state 
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detects a person approaching, the episode rules may trigger a 

transition from the idling behavior to a greeting behavior. After 

greeting the person, the next behavior might be to offer route 

guidance and wait for a response. The transition rules would 

then choose the next behavior based on input from the speech 

recognition system. If the person asked for directions to a 

bookstore, and if we assume the speech recognition system 

correctly recognized the word “bookstore”, the system would 

then transition to the module for giving directions to the 

bookstore.  

C. Multi-Robot Coordination 

We will consider two possibilities for handling conflicts 

between robots for the operator’s attention. First, a naïve 

method of simply alerting the operator of critical sections and 

second, a technique we call Proactive Timing Control. 

In the first approach, each robot can notify the operator of a 

critical section, and then proceed in its interactions regardless of 

the state of the operator or other robot(s). If the interaction 

reaches a point where the robot is unable to respond without 

operator intervention, the robot will need to stall for time [36] 

until the operator becomes available. 

The robot can simply wait in silence, or it can repeat phrases 

like, “hmm… hold on… please wait” until the operator can 

provide assistance. The drawback of this approach is that such 

behavior might leave a negative impression on a user 

impatiently waiting for a response. 

To avoid making a customer wait in this way, we propose a 

mechanism for handling the problem of conflicting critical 

sections, which we call Proactive Timing Control (PTC). This 

mechanism enables interactions to be coordinated in order to 

prevent critical section conflicts from arising at all. One means 

of achieving this is for each robot to send a reservation request 

to the operator before a critical section begins. If the operator 

accepts, the robot can proceed to the critical section. Otherwise, 

the robot performs other behaviors in order to delay entry into 

the critical section. 

This technique changes the robot’s behavior in an important 

way from the customer’s perspective. When PTC is not used, 

the delaying behaviors are executed after the user’s “turn” in the 

conversation, that is, after the user has made a request or asked a 

question. There, the user is understood to have the initiative, and 

the robot is expected to react. 

With PTC, however, the delaying behavior is executed before 

the user has spoken, while it is still the robot’s “turn” in the 

conversation. The robot has not yet relinquished the initiative, 

and thus the extra behaviors integrate more smoothly into the 

flow of interaction. The effectiveness of this technique has been 

demonstrated in a study of the effects of wait time upon 

customer satisfaction [37]. 

D. Teleoperation Interface Design 

Teleoperation interface software was developed to enable the 

operator to control one robot (referred to here as the “active” 

robot) while monitoring the others in the background. The 

interface used is pictured in Fig. 5. The four panels on the top 

left of the screen show the status of each robot, and the operator 

can click one to begin controlling that robot. Below those 

panels, the button panel on the left can be used to trigger robot 

behaviors. The column of buttons to the right of that can be used 

to correct speech recognition results, and the pop-up window on 

the right side shows a map of guide destinations from which the 

operator can trigger guide behaviors. 

This interface is nearly identical to that used in [8], and further 

details of its functionality are explained there. Major differences 

from that interface include the addition of a map display of the 

robot’s location (lower right), the addition of a panel showing 

video from the robot’s eye camera (upper right) and the removal 

of the buttons for “reserving” a robot without switching to it, as 

this functionality is not particularly necessary unless PTC 

behaviors are very long. 

E. Example Interaction 

Here we will describe an example of a typical multi-robot 

control session from our experiment. In this example, the 

operator is controlling three robots, and the system is not using 

PTC, i.e. there is no attempt to prevent conflicts between robots 

demanding the operator’s attention at the same time. 

First, Robot 1 detects a person approaching. As it begins a 

greeting behavior, its Interaction Status light changes to yellow 

and the Countdown Timer on the robot’s status panel begins 

counting down until the robot expects the human to speak. 

The operator clicks on the robot’s status panel to choose 

Robot 1 as the active robot, and the bottom half of the user 

interface refreshes to show Robot 1’s current status, behavior 

history, and speech recognition results. The audio from Robot 1 

is also streamed to the operator’s headphones, and the operator 

listens as Robot 1 introduces itself, “My name is Robovie, and 

my job is giving directions. Where would you like to go?” 

At this point, the operator notices that a person has 

approached Robot 3 as well. However, the operator stays 

focused on Robot 1, as its Countdown Timer is just reaching 

zero. The customer asks where to find an ATM. Unfortunately, 

due to background noise, Robot 1’s speech recognition was 

unable to pick up the word “ATM”, and so the operator goes to 

the expected phrases panel and clicks on “ATM”. Robot 1 then 

begins giving directions to the customer, and the operator 

quickly switches to Robot 3, whose countdown timer has almost 

reached zero. 

By this time, a customer has approached Robot 2 and begins 

asking directions while the operator is still busy helping Robot 

3. Robot 2’s Interaction Status light flashes red. By the time the 

operator finishes helping Robot 3, the customer talking to Robot 

2 has already finished speaking. Robot 2’s speech recognition 

system has picked up the word “hamburger”, which is displayed 

on its Speech Results display, but the robot has no mapping 

between that word and a location in the mall. The operator 

quickly switches to Robot 2, opens the map, and clicks on a 

restaurant that specializes in hamburgers. Robot 2 then gives 

directions to that restaurant, as the Interaction Status indicators 

for Robots 1 and 3 return to green. 
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Fig. 5.  Teleoperation interface. Panels in the top left show the status of each robot, and can be clicked to select that robot. The video pane on the upper right shows 

the video feed from that robot’s eye camera. The tabbed button panel on the left sends direct commands to the robot.  The column of buttons to the right of that panel 

show expected utterances, allowing the operator to perform manual speech recognition for the robot. The pop-up map on the right allows the operator to select a 

location for commanding guide behaviors. 

V. EXPERIMENTAL VALIDATION 

Preliminary experiments presented in [8] suggested that 

teleoperation of multiple social robots is possible and useful, 

and that PTC is a fundamental technique that can support it. The 

video attachment shows an excerpt from that study, in which 

four robots are simultaneously controlled by one operator. The 

video includes audio feeds from all robots, to illustrate the 

difficulty of controlling four robots at once; however, the 

operator focused on and controlled only one robot at a time. 

The work in [8] was only a preliminary study using internal 

subjects. We conducted a formal laboratory experiment with 

unbiased participants to evaluate the feasibility and 

effectiveness of our approach to teleoperation of multiple social 

robots, as well as the effectiveness of the Proactive Timing 

Control technique in particular. 

A. Laboratory Experiment 

1) Scenario 

For this experiment, we chose route guidance as a realistic 

example of the kind of task a robot might be assigned to 

perform. It is easy to imagine a business such as a shopping 

mall, museum, or theme park placing a robot in a high-visibility 

location such as a central information booth. This task also lies 

in an interesting middle-ground between full predictability and 

open-endedness, and it provides a level of interactivity not 

found in primarily one-way interactions such as guiding visitors 

in a museum. 

2) Experimental Design 

The experiment was designed to evaluate performance of the 

operator-robot team while varying two factors. The first factor, 

robot-number, was examined in three levels: 2R, 3R, and 4R, 

representing the number of robots being simultaneously 

controlled by the operator. The second factor, PTC, was 

examined in two levels: with-PTC and without-PTC. 

The experiment was designed to evaluate two hypotheses. 

Our first hypothesis was that our system would improve 

performance compared with a purely autonomous system, 

regardless of whether or not PTC was used. To validate this 

hypothesis, we tested the performance of our system on an 

absolute scale, comparing 2R, 3R, and 4R trials against two 

baseline cases: a single-robot case where the operator was 

always present, referred to as the 1R condition, and a 

fully-autonomous case with no operator intervention, referred to 

as the A condition. This comparison was performed separately 

for the with-PTC and without-PTC configurations of our 

system. 

We predicted that performance in the with-PTC  condition 

should be comparable to that in the 1R baseline, although 

performance in the without-PTC condition might be lower, 

particularly for large numbers of robots (3R, 4R). 

Our second hypothesis was that the use of PTC in particular 

would improve performance of the robot team relative to the 

without-PTC conditions, and that this improvement in 

performance would increase for larger numbers of robots. This 

was evaluated by a comparison between with-PTC and 

without-PTC conditions for each of the 2R, 3R, and 4R cases.  
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Fig. 6.  Four robots operated simultaneously in our experiment. 

 

 To test these two hypotheses, our experiment included a total 

of 8 conditions to be evaluated: with-PTC and without-PTC 

variations for each of the 2R, 3R, and 4R cases, and the two 

baseline cases, for which the use of PTC is not relevant.  

3) Setup 

The behaviors and decision logic for the route guidance 

scenario were adapted from a recent deployment of our robots in 

a shopping mall. We used the interaction flow described in 

Section IV-A, with the chat behaviors (Phase #3 in Table 3) 

adapted for use as PTC behaviors. 

The PTC behaviors consisted of interruptible sequences of 

short behaviors with an average duration of 4.4 seconds. After 

each behavior, the sequence could be interrupted or continued 

based on the presence or absence of an operator. 

An example of such a sequence is the following: “Hi, I’m 

Robovie. / I know many things about this shopping mall. / This 

week the mall is having a special anniversary celebration. /  

There are many discount campaigns and exciting activities 

planned! / There is a 10% off sale in the clothing section. / And 

next Sunday there will be a classical music concert!” When an 

operator became available, the sequence could be interrupted 

after any of these utterances so the robot could begin the critical 

section by offering to give route guidance, and the entire 

sequence would flow in a fairly natural way. Four of these PTC 

sequences were prepared for the experiment, with a maximum 

possible length of 12 behaviors each, and one sequence was 

chosen at random for each interaction. 

It is important to note that these behaviors were not merely 

time-killing behaviors. These chat behaviors had originally 

been part of the natural conversation flow. When the robot 

spoke about these topics in the field trial, they were relevant to 

the customers, who enjoyed their interactions with the robot. 

The experiment was conducted in our laboratory, using two 

Robovie-II and two Robovie-R2 robots, as shown in Fig. 6. 

Each robot also had an automatic speech recognition (ASR) 

system, which operated in parallel with the operator. 

4) Participants 

16 paid participants played the role of customers in this 

experiment (12 male, 4 female, average age 22.3, SD=2.5 

years). All were native Japanese speakers. 

One expert operator, an assistant in our laboratory, was 

employed to control the robots for all trials. The operator was 

trained in the use of the control interface and thoroughly 

familiar with the map of guide destinations prior to the 

experiment, so we assume negligible improvement in operator 

performance across trials. 

5) Procedure 

To provide the operator with consistent task difficulty in the 

different experimental conditions, each trial consisted of 24 

interactions in total, i.e., 6 interactions per robot in the 4R case, 

8 in the 3R case, 12 in the 2R case, and 24 in the 1R case. The A 

condition was conducted with four robots but no operator.  

In these trials, one “interaction” included a greeting from the 

robot, possible chat behaviors for PTC, a question from the 

customer, and a response and farewell from the robot. Eight 

trials were run on each day of the experiment, one for each of the 

conditions (2R-with, 2R-without, 3R-with, 3R-without, 4R-with, 

4R-without, 1R, and A). 

On the customer side, 4 participants took part in every trial, 

and each participant interacted with the robots a minimum of 6 

times per trial. Participants were assigned evenly across the 

robots. To achieve even distribution in the 3R conditions, three 

participants interacted 6 times each with assigned robots, while 

one participant moved between the robots, performing two 

interactions with each. In other conditions, participants did not 

move between robots. 

This experimental procedure was repeated on four days with 

a different group of 4 customer participants on each day, for a 

total of 16 participants acting as customers. The order of the 

eight trials on each day was counterbalanced with respect to 

both the robot number and PTC factors. 

For consistency in timing, interactions were robot-initiated, 

with the robot inserting a pause of 0-5 seconds between 

interactions. To provide a consistent level of workload for the 

operator, participants continued interacting with the robots for 

the entire duration of each trial, going beyond the 6 evaluated 

interactions if necessary. 

6) Evaluation 

There is a causal chain of effects which we expect to produce 

different results between the with-PTC and without-PTC 

conditions. First, the use of PTC should increase the number of 

critical sections for which the operator is present. This should 

consequently increase the interaction success rate, because the 

speech recognition system is used less often. Finally, this 

improved success rate combined with reduced wait time in the 

critical section should improve customer satisfaction. 

Accordingly, to evaluate the performance of the system, we 

measured three variables: the rate of operator supervision in the 

critical section, the overall ratio of successful interactions, and 

customer satisfaction on a scale of 1 (unsatisfied) to 7 

(satisfied). Interaction success (whether the robot had 

successfully answered the question) and customer satisfaction 

were reported by participants after each interaction. 

B. Experimental Results 

The results of this experiment are illustrated in Fig. 7, showing 

operator supervision during the critical sections; Fig. 8, showing 

the interaction success rates; and Fig. 9, showing results from 

the customer satisfaction questionnaire.  

 

http://dx.doi.org/10.1109/TSMCA.2011.2164243


DOI: 10.1109/TSMCA.2011.2164243 
 

11 

 

0%

20%

40%

60%

80%

100%

2R 3R 4R

Supervision in Critical Section

With PTC Without PTC

  
Fig. 7.  Operator supervision during critical sections. 
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Fig. 8.  Interaction success rate. Error bars show standard error. 
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Fig. 9.  Customer satisfaction. Error bars show standard error. 

 

1) Absolute comparison 

To evaluate the absolute performance of the system between 

with-PTC and without-PTC, we examined each PTC condition 

separately, comparing the 2R, 3R, and 4R levels of that 

condition with the 1R and A baseline cases. 

Operator supervision in critical section: Due to the use of 

PTC, the operator availability during critical sections was 100% 

for every trial in the with-PTC condition (Fig. 7). In the 

without-PTC condition, operator availability decreased 

markedly as the number of robots increased. 

Interaction success: For the with-PTC conditions, 100% of 

the robot’s responses were correct, which is to be expected as 

the operator was present for all interactions. In the without-PTC 

conditions, the interaction success rate decreased as the number 

of robots increased, up to a 10% failure rate in the 4R condition. 

In both conditions, there was a significant difference when 

compared with the autonomous case, which was successful only 

27% of the time (with-PTC condition: χ2(4)= 327.805, p<.01, 

residual analysis: 1R, 2R, 3R, and 4R to A: p<.01, without-PTC 

condition: χ2(4)= 247.307, p<.01, residual analysis: 1R, 2R, and 

3R, to A: p<.01, and 4R to A: p<.05). 

Customer satisfaction: For the with-PTC condition, customer 

satisfaction did not vary significantly between the 1R – 4R 

conditions. A repeated-measures ANOVA revealed a 

significant difference in the main effect of robot number 

(F(4,15)= 189.786, p<.001). A Bonferroni test revealed 1R, 

2R, 3R, and 4R to be significantly better than A (p<.001), but no 

significant difference was found among 1R, 2R, 3R, and 4R. 

For the without-PTC condition, customer satisfaction did not 

vary significantly between the 1R – 3R conditions, but 

decreased at 4R. A repeated-measures ANOVA revealed a 

significant difference in the main effect of number of robots 

(F(4,15)= 108.571, p<.001). A Bonferroni test revealed that 

1R, 2R, 3R, and 4R were significantly better than A (p<.001), 

and 1R and 2R were significantly better than 4R (p<.001 and 

p<.01). The difference between 3R and 4R was approaching 

significance (p=.077). There were no significant differences 

among 1R, 2R, and 3R. 

These results confirm our hypothesis that performance in all 

teleoperated cases would be higher than the autonomous 

baseline. For the 4R case, the significant decrease in customer 

satisfaction for the without-PTC condition also agrees with our 

prediction. 

2) Relative comparison 

To confirm the relative effect of PTC, we directly compared 

the customer satisfaction for with-PTC and without-PTC for 

each level of the number of robots. A paired t-test revealed 

significant differences for 3R (t=4.442, p<.001), and 4R 

(t=4.986, p<.001), and an almost-significant difference for 2R 

(t=1.813, p=.090).  

This result is consistent with our hypothesis that the use of 

PTC will improve performance, and that the performance 

improvement will be stronger for larger numbers of robots. 

C. Operator Experience 

During this experiment, the operator often remarked that she 

felt a high level of pressure and frustration during the trials 

without PTC, because she was aware that many robots were 

entering critical sections at the same time. She said she felt 

relaxed, and that the interactions seemed to go smoother when 

PTC was used. 

VI. SIMULATION 

Our laboratory trials provided a practical demonstration of a 

single operator controlling multiple robots in conversational 

interactions. However, due to logistical limitations such as the 

number of robots available, it was not possible to evaluate our 

system with more than four robots, or to observe the effects of 

varying parameters such as CTR. We created a simulation based 

on the interactions observed in our experiment, in order to 

explore the dynamics of PTC and to make projections about the 

performance of our system under a variety of conditions. 
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Fig. 10.  Examples of simulated interactions without Proactive Timing Control. 

Dark gray boxes represent non-critical interaction phases. Light-colored boxes 

represent attended critical sections, and diagonally shaded red boxes represent 

unattended critical sections. Numbers to the left of each phase indicate its 

duration in seconds. Vertical bars indicate which robot the operator is attending 

at any given time. 

 

A. Interaction Model 

The interaction model used in the simulation represents each 

interaction as a sequence of phases, as shown in Table 4. The 

length of each phase is modeled as a normal distribution with 

mean and standard deviation calculated from the interactions 

conducted in our experiment.  

Interactions normally proceed in sequence through the 

Pre-Critical, Critical Section, Post-Critical, and Non-Interacting 

phases. If Proactive Timing Control is being used, then the 

system will transition to a PTC Behavior rather than a Critical 

Section if the operator is unavailable.  

The simulator included an optional limit on the number of 

PTC behaviors, instructing the simulator to transition to the 

Critical Section when the operator becomes available, or after 

the maximum number of PTC behaviors have been executed. 

A. Task Success 

Task success is estimated by categorizing each Critical 

Section as attended or unattended. For our simulation, if an 

operator is present for an entire Critical Section, it is considered 

to be attended. If the operator is absent for any fraction of the 

critical section, it is considered to be unattended. Note that this 

method of counting is used because it is important to attend a 

critical section from the beginning in order to guarantee that the 

customer’s question is heard in its entirety. If the operator is 

late, the speech recognition system may have already provided 

an incorrect response, or the operator may need to repeat the 

question. 

 

 
Fig. 11.  Examples of simulated interactions with Proactive Timing Control. 

Dark gray boxes represent non-critical interaction phases. Light-colored boxes 

represent attended critical sections, and boxes with metallic shading represent 

PTC delay behaviors. Numbers to the left of each phase indicate its duration in 

seconds. Vertical bars indicate which robot the operator is attending at any 

given time. 

 

In our experiment, the operator’s accuracy rate during 

attended interactions was 100%, whereas the speech recognition 

system’s success rate in the autonomous case was 27%. Our 

simulation thus assumes a response accuracy of 100% for 

attended interactions and 27% for unattended interactions. 

B. Operator Allocation 

The simulated operator is allocated to robots according to the 

following simple algorithm: 

- If the operator’s current robot is in a critical section, do not 

switch to a new robot. 

- Otherwise, if any other robot is currently in a critical 

section, switch to the robot which has been in its critical 

section the longest. 

- Otherwise, switch to the robot for which the anticipated 

critical section begins soonest. 

This algorithm is not necessarily guaranteed to be optimal, 

but it is roughly based on the way operators were observed to 

operate the system during testing. 

Figures 10 and 11 illustrate typical interaction flows with and 

without Proactive Timing Control. 

 
TABLE 4. INTERACTION PHASES AND DURATIONS 

Interaction Phase Mean Duration 

(s) 

Standard 

Deviation (s) 

Pre-Critical 4.9 1.1 

PTC Behavior 4.4 1.7 

Critical Section 6.3 5.0 

Post-Critical 14.8 2.8 

Non-Interacting 0.5 0.0 
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Fig. 12. As the number of robots increases, more PTC behaviors are required to 

guarantee that an operator can attend all Critical Sections. 

 

0

5

10

15

20

25

1 2 3 4 5 6 7 8A
ve

ra
ge

 N
u

m
b

e
r 

o
f 

P
TC

 B
e

h
av

io
rs

Number of Robots

Effect of Critical Time Ratio

0.5 CTR

0.4 CTR

0.3 CTR

0.2 CTR

0.1 CTR

 
Fig. 13. The average number of PTC behaviors required for a given number of 

robots increases as a function of Critical Time Ratio. 

Patterns of operation 

Figures 10 and 11 show how PTC dramatically reduces the 

number of unattended critical sections. The operator in Fig. 10 

is only present for the beginning of 31% of critical sections, 

whereas the operator in Fig. 11 is present for 100%. These 

diagrams also show the dynamics of the system – at the 

beginning, when customer arrivals are nearly simultaneous, the 

operator requires long PTC behaviors to start the interleaving of 

interactions, but after this point shorter PTC behaviors are 

sufficient to handle the random variation in interaction lengths. 

Such a pattern might be observed in a busy case where 

customers were waiting their turn to talk to the robots. 

C. Number of PTC Behaviors 

As the number of robots increases, more PTC behaviors will 

be required, and the average length of interactions will increase. 

We examined this trend using our simulation. 

Figure 12 shows the maximum and average number of PTC 

behaviors used by our simulated system in runs of 1000 

interactions using 1-8 robots. Here, one PTC behavior consists 

of a short utterance of around 4.4 seconds in length. 

The results from this simulation agreed closely with our 

experimental results, as our operator used a maximum of 10 and 

an average of 3.9 PTC behaviors for the 4-robot case, compared 

with a maximum of 10 and average of 3.1 in the simulation. 
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Fig. 14. Variation in operator supervision during critical sections as maximum 

number of PTC behaviors varies. 
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Fig. 15.  Change in error rate as maximum number of PTC behaviors varies. 

 

As discussed in Section III, Critical Time Ratio (CTR) is 

determined by the design of an interaction. A highly interactive 

robot application would have long critical sections, and thus a 

high CTR, whereas a robot mostly performing fixed behaviors 

with less responsiveness to a customer would have a low CTR. 

Figure 13 shows the average number of PTC behaviors used in 

our simulations for interactions using a base CTR (not including 

PTC behaviors) ranging from 0.1 to 0.5. The figure illustrates 

how an interaction designer can balance the CTR of an 

interaction with the desired average PTC duration to target a 

given number of robots. 

D. Relying on Autonomy 

The results so far assume an unlimited number of PTC 

behaviors and a target of perfect operator attendance during 

critical sections. However, the choice of how many PTC 

behaviors to use can be seen as a tradeoff between the desired 

level of response accuracy and its cost in terms of design 

difficulty and extended interaction time. Limiting the number of 

PTC behaviors causes the system to rely more on autonomy. 

Figures 14 and 15 show how system performance degrades 

when the number of PTC utterances is limited. 

In these interactions, the limited number of PTC behaviors 

increases the number of unattended critical sections, and 

consequently increases the error rate due to failures caused by 

the autonomous system. For a route guidance application, errors 

are not acceptable, so the maximum number of PTC behaviors 
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shown in Fig. 12 should be prepared. However, it is conceivable 

that some conversational robot applications might permit a 

small number of errors, and so the designer can make the 

trade-off between PTC duration and target error rate. 

As the capabilities of recognition systems improve over time, 

it may be possible to rely more heavily on autonomy and thus 

achieve very high performance with minimal use of PTC.  

VII. DISCUSSION 

We were actually quite surprised by the positive results of the 

laboratory experiment and the operator’s success in controlling 

four robots. Theoretical predictions notwithstanding, we had 

initially expected three robots in a real-world situation to be a 

challenge and four to be nearly impossible. However, the results 

from our experiment showed our approach to multi-robot 

control for conversational interactions to be much more 

effective than we had anticipated. 

Here we will discuss several results from our experiment and 

how the principles can be generalized to other systems. 

A. Maximum fan-out 

As the simulation results illustrate, the maximum number of 

robots an operator can control depends on a variety of factors, 

including sensor reliability, critical time ratio, maximum 

number of PTC behaviors, and acceptable error rate. For the 

most difficult interaction settings in our experiment, the 

operator was successfully able to control four robots with 90% 

task success, and for the trials using PTC the operator was 100% 

successful in conducting all 288 interactions with no errors. 

Both of these results are dramatically superior to the low 27% 

success rate of the robots operating autonomously. 

B. Defining Criticality 

One conceptual model contributing to the success of our 

system was the division of interactions into critical and 

non-critical sections. It is fairly straightforward to apply this 

model to transactional interactions such as giving directions, 

particularly when a question is followed by a long explanation.   

This model can be applied to many kinds of interactions, such 

as providing information, giving directions, and providing 

services requested by a customer. It can also be adapted for 

more complex interactions. For example, if a robot needs to ask 

a series of several questions, it may make sense to extend the 

critical section to encompass all of them in a single block. This 

may result in a small amount of wasted time for the operator 

while the robot is giving explanations or asking questions, but 

the operator is also guaranteed to be present for each of the 

follow-up questions, at a time where it may be awkward to insert 

delay behaviors. 

In the general case, it will be important to consider both the 

risk of error and the cost of that error, both of which can be 

continuous variables. These subtleties may become more 

important in complex or long-term interactions; however, for 

the simple interactions in this study we will consider only two 

levels of criticality and model all failures as having equal cost. 

C. Proactive Timing Control 

From a system-level perspective, the Proactive Timing 

Control technique improves the operator’s span-of-control in 

two distinct ways. To illustrate this, consider the critical 

sections of a robot’s interactions to be like teeth in a gear, with 

noncritical sections represented by the gaps between the teeth. 

For an operator to control two robots, two gears must mesh, that 

is, the critical sections cannot overlap. The first way PTC 

achieves this is by synchronizing the gears – that is, holding one 

gear in place briefly while the other turns, until the critical 

section of one falls into the gap of the other. Adjustments like 

this are occasional and probably small. For example, with a 

hypothetical set of gears with perfectly regular spacing (i.e. 

when the lengths of the conversation phases are fixed) this 

adjustment would only be made once. 

The second way PTC improves interleaving of tasks is by 

reducing the Critical Time Ratio, that is, by widening the gaps 

between the gear teeth overall. This is necessary when the time 

between critical sections is not sufficient to allow the gears to 

mesh during normal operation. This is a less desirable use of 

PTC, as delay behaviors must be executed for nearly every 

interaction. For behaviors such as those in our implementation, 

the content of the delay behaviors is generally not related to the 

context of the interaction. Thus, to create more natural 

interactions, it would be better to reduce the CTR at design time 

by extending or inserting behaviors relevant to the current 

interaction, rather than rely on PTC to make up for an 

insufficient gap between critical sections. 

D. Limitations 

The user study presented in this work was conducted in a 

laboratory environment with a pool of 16 customers performing 

repeated interactions with a robot. The results demonstrate that 

the proposed technique significantly improves performance, 

however, the use of PTC in real-world deployments of robots 

may have a stronger or weaker effect on customer satisfaction 

due to factors such as the novelty effect of the robots, 

customers’ lack of familiarity with the robot’s conversation 

style due to non-repeated interactions, quality and 

appropriateness of the robot’s utterances, and variation based 

on the deployment context, e.g. whether people in that 

environment are in a relaxed or rushed mood. 

Likewise, the simulation results are based on the user studies, 

so the results should not be necessarily seen as numerical 

predictors of customer satisfaction in the field.  However, these 

results do serve to illustrate the dynamics of the system and the 

effects of varying different parameters, results that will be 

useful in designing and tuning systems for the real-world 

deployment. 

VIII. CONCLUSIONS  

In this study, we have presented a general framework for 

enabling the simultaneous teleoperation of multiple social 

robots, focusing on four key design areas: human-robot 

interaction design, autonomy design, multiple-robot 
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coordination, and teleoperation interface design. While many 

key aspects of autonomy design and teleoperation interface 

design are similar to issues faced in other fields of robotics, the 

areas of human-robot interaction design and multi-robot 

coordination present many new issues which are unique to 

social robots. 

Based on this conceptual framework, we implemented a robot 

system to demonstrate the new concept of a single operator 

controlling multiple robots in simultaneous social interactions. 

Our laboratory evaluations showed our system to be quite 

successful, with an operator achieving over 95% task success 

while controlling up to four robots in one experiment. These 

results demonstrate the value of our conceptual framework as 

well as the effectiveness of our specific solutions, such as 

Proactive Timing Control. 

In our experiment, task success and customer satisfaction in 

every condition were far superior to those attainable by the same 

system operating in a fully-autonomous mode.  Furthermore, 

our simulation results show that PTC reduces or eliminates 

conflicts between robots for an operator’s attention. Even when 

PTC behaviors are limited, and the operator is forced to rely on 

automatic speech recognition some of the time, our simulation 

results indicate that PTC will provide a substantial increase in 

task success over a system with no timing control. 

Most importantly, we have tested this system using an actual 

task often performed by our robots in the field, suggesting that 

this technology can be immediately put to use in real-world field 

trials. This study introduces the new field of teleoperation for 

multiple social robots, and several of the topics addressed in this 

paper are promising areas for further in-depth research. 
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