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 
Abstract—For a robot providing services to people in a public 

space such as a shopping mall, it is important to distinguish potential 
customers, such as window-shoppers, from other people, such as busy 
commuters. In this paper, we present a series of abstraction techniques 
for people’s trajectories, and we present a service framework for using 
these techniques in a social robot, which enables a designer to make 
the robot proactively approach customers by only providing 
information about target local behavior. We placed a ubiquitous sensor 
network consisting of six laser range finders in a shopping arcade. The 
system tracks people’s positions as well as their local behaviors such 
as fast walking, idle walking, wandering, or stopping. We 
accumulated people’s trajectories for a week, applying a clustering 
technique to the accumulated trajectories to extract information about 
the use of space and people’s typical global behaviors. This 
information enables the robot to target its services to people who are 
walking idly or stopping. The robot anticipates both the areas in which 
people are likely to perform these behaviors, and also the probable 
local behaviors of individuals a few seconds in the future. In a field 
experiment we demonstrate that this service framework enables the 
robot to serve people efficiently. 
 

Index Terms — Networked robot, Ubiquitous robot, Behavior 
anticipation, Social human-robot interaction  

I. INTRODUCTION 

e believe that the robot can be a powerful device for 
bridging the gap between the digital and physical worlds. 
Since robots are mobile and embodied, they are 

well-suited for presenting digital information in the physical 
world. Previous studies have demonstrated that social robots 
can be used as museum guides [3, 4], as receptionists for 
assisting visitors [5], and as peer-tutors in schools [6]. 

On the other hand, robots have only weak sensing 
capabilities, which limited these robots to waiting for visitors to 
initiate interactions. Since we aim to realize a robot that 
proactively provides services in public spaces, it needs reliable 
observations of the positions and motion of people. However, a 
robot using onboard sensors can usually recognize people only 
within a few meters, and its sensing is not robust. To overcome 
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these limitations, we use a "network robot system" approach [7], 
in which a robot is supported by a ubiquitous sensor network 
which observes and interprets information about people. Such 
an approach combines the stability and wide-area sensing 
capability of a ubiquitous sensor network with the intuitive 
presentation capabilities of the robot. 

This paper describes a service framework for a network 
robot system, in which a mobile humanoid robot proactively 
approaches customers to provide information. It consists of a 
series of three abstraction techniques for people's trajectories: 
local behavior, use of space, and global behavior. We define 
the term local behavior to refer to basic human motion 
primitives, such as walking, running, going straight, and so on. 
The observation of these local behaviors can then reveal 
information about the use of space, that is, general trends in 
people’s behavior in different areas of the environment. Finally, 
for more insight into the structure of people’s behaviors, we 
look at global behavior, that is, overall trajectory patterns 
composed of several local behaviors in sequence, such as 
“entering through the north entrance, walking across a street, 
and stopping at a shop.” Global behaviors are highly dependent 
on the specific environment. 
    In addition, since timing is highly critical for social 
interactions, we also focus on the problem of anticipating the 
motion and behavior of customers, to determine where the 
robot should move and which customers the robot should 
approach. For example, if a robot is designed to invite 
customers to a shop, it should approach people who are walking 
slowly and possibly window-shopping. To approach those 
customers, two anticipation techniques are presented: 
location-based anticipation and behavior-based anticipation. 
The detection of local behaviors and analysis of the use of 
space can be valuable in anticipating where behaviors are 
statistically likely to occur, i.e. location-based anticipation; 
however, an analysis of global behavior patterns is far more 
powerful for predicting individual behavior, i.e. 
behavior-based anticipation. As people using the space have a 
variety of goals, an understanding of global behavior is 
essential in enabling the robot to anticipate the future behaviors 
of individuals. 
    Moreover, one of the notable features of the service 
framework is that a designer needs only to specify a target local 
behavior in order to make a robot proactively approach 
customers. The effectiveness of the service framework is 
demonstrated with a field trial with two examples of 
applications: one is for entertainment, and another is to invite 
customers to a shop. 

Abstracting People’s Trajectories for Social 
Robots to Proactively Approach Customers 

Takayuki Kanda,  Dylan F. Glas, Masahiro Shiomi, and Norihiro Hagita 

W



T-RO 09-0064 2

II. RELATED WORKS 

This section provides a survey of previous studies regarding 
these three concepts: local behavior, use of space, and global 
behavior. Table 1 provides a summary of this survey. 

A. Position and Local Behaviors 

People's positions and trajectories have frequently been 
studied in robotics and computer vision (for example, [8, 9, 
10]). In ubiquitous computing, positioning devices are often 
used, such as GPS, or the signal strength of radio (GSM, WiFi, 
Bluetooth, RFID, and power line) [11, 12, 13, 14].  

Ubiquitous computing technology is increasingly being used 
to identify people’s local behavior as well. For example, Eagle 
and Pentland developed a Bluetooth-based device attached to a 
mobile phone that enables the analysis of activities such as 
being at home, at the office, or elsewhere [15]. Liao et al. also 
used locations obtained via GPS with a relational Markov 
model to discriminate location-based activities such as being at 
home, at the office, and out dining [16]. Subramanya et al. 
included motion states (such as stop, walk, run) and velocity 
into a model to estimate people’s low-level activity and spatial 
context [17]. 

These techniques all used wearable or mobile personal 
devices. Our focus is on applications in an anonymous public 
space, so we chose a method independent of such devices. We 
measure walking motion using laser range finders, sensors 
often used in robotics due to their precision, simplicity, and 
non-invasiveness. A number of techniques exist for tracking 
people using multiple laser range finders [9, 10, and 18]. 

B. The Use of Space 

Humans’ spatial behavior has attracted scientific interest for 
a long time. In the 1970’s and 1980’s, a technique named 
“space syntax" was developed to analyze town-level use of 
space with pre-defined logic [19]. People’s route choice and a 
form of trail were modeled as “active walker models” [20]. 

Such early studies required labor-intensive effort to collect 
data, which limit them to reveal only broad patterns; however, 
recent sensing technologies enable us to automatically 
accumulate large amount of trajectories with precise accuracy. 
Previous studies revealed that trajectories enable the 
identification of pausing points [21] and traffic paths [10, 21].  

Information on the general use of space has also been 
retrieved. Nurmi et al. applied a spectral clustering method for 
identifying meaningful places [22]. Aipperspach et al. applied 
clustering to UWB sensor data to identify typical places in the 
home [23]. Koile et al. conducted a clustering of spaces with a 
focus on the relationships between velocity and positions, 
which enabled a partitioning of space into “activity zones.” For 
example, places for walking, working, and resting were 
separated [24]. Our work involves partitioning space in a 
similar manner, but based on position and local behavior. In 
addition, we also consider how the distribution of these zones 
varies as a function of time. 

C. Global Behavior 

Models of human walking have been developed for 
transportation engineering and architectural design. These 
models are usually concerned with how environmental 
information affects people’s behavior, such as a line of sight 
toward environmental structures [25] and movement of 
individuals in a crowd [26]. Positioning techniques could 
contribute to these models by providing automated, accurate 
position information. 

In previous studies, positioning techniques have been used 
for categorizing people, and estimating people’s goals and 
intentions [27]. In a museum context, Sparacino developed the 
“museum wearable,” where people were classified into three 
visiting patterns. Depending upon the pattern, the system 
adjusted the way it presented information [28]. This is a good 
example of the use of global behavior; however, the places and 
the model of global behaviors were carefully prepared by a 
human designer. 

Table 1: Related studies that concerns position, place, and the context with positions 

 Recognition Service 
Local 
behavior  

The use 
of space

Global 
behavior

Anticip
ation

Frame
work

Human input required 
for context design? 

domain 

Reality Mining [15] ✔     --- Personal (city) 
Liao et al.[16], ✔     --- Personal (city) 
Subramanya et al.[17] ✔     --- Personal (city) 
Suzuki et al. [21] ✔ ✔ --- Public (shop) 
Shao  et al. [10] ✔ ✔    --- Public (station)
Nurmi et al. [22]  ✔    ---  Personal (city) 
Aipperspach et al. [23]  ✔    --- Personal (home)
Activity zone [24] ✔ *1    Required Personal (home)
Museum wearable [28]  *1 *1   Required Public 

(museum) 
Pre-destination [29]   ✔ ✔  --- Personal (car) 
Bennewitz et al. [36]    ✔  --- Public (corridor)
This study ✔ ✔ ✔ ✔ ✔ Not required Public (mall) 

https://www.researchgate.net/publication/224296414_Detection_and_tracking_of_multiple_pedestrians_by_using_laser_range_scanners?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/221568322_A_Study_of_Bluetooth_Propagation_Using_Accurate_Indoor_Location_Mapping?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/2839172_People_Tracking_with_Anonymous_and_ID-Sensors_Using_Rao-Blackwellised_Particle_Filters?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/228092030_Recognizing_Activities_and_Spatial_Context_Using_Wearable_Sensors?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/238786191_The_Social_Logic_of_Space?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/1947309_Active_Walker_Model_for_the_Formation_of_Human_and_Animal_Trail_Systems?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/228337437_Identifying_meaningful_locations?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/228337437_Identifying_meaningful_locations?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/221568634_A_Quantitative_Method_for_Revealing_and_Comparing_Places_in_the_Home?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/221568634_A_Quantitative_Method_for_Revealing_and_Comparing_Places_in_the_Home?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/23541316_Encoding_natural_movement_as_an_agent-based_system_An_investigation_into_human_pedestrian_behaviour_in_the_built_environment?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/222085377_Discrete_choice_models_of_pedestrian_walking_behavior?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/221605524_Multiple-Goal_Recognition_from_Low-Level_Signals?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/221568594_Predestination_Inferring_Destinations_from_Partial_Trajectories?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/220122470_Learning_Motion_Patterns_of_People_for_Compliant_Robot_Motion?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
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In contrast, we have applied a clustering technique to 
identify typical visiting patterns in a museum without providing 
any environmental information [1]. One of the novel points of 
our current work is that the designer of the system provides 
information only about the target local behavior, with no 
knowledge about the structure of the space or of people’s 
global behaviors. In addition to the previous work, this paper 
provides a method of online estimation of global behavior, 
which is indispensable for providing services. 

The online estimation of global behaviors is difficult as, by 
definition, any global behavior being observed in real time is 
unfinished and thus not completely observable. Thus, it is 
necessary to estimate the true global behavior from a limited 
data set. Krumm et al. developed a technique they call 
“Predestination”, which enables someone’s driving destination 
to be estimated [29]. Liao et al. developed a technique for a 
person wearing GPS to infer her destination, transportation 
mode, and anomalous behavior [30]. 

While personal history of previous destinations was an 
important part of those studies, our anticipation technique for 
the shopping arcade assumes zero knowledge of a given 
person’s individual history.  Our technique is predicated on our 
observations of tens of thousands of people and the expectation 
that a new person’s global behavior will be similar to those 
previously observed. 

The concept of behavior anticipation is not without 
precedent in robotics. For example, Hoffman et al. 
demonstrated the value of anticipatory action in human-robot 
collaboration [31]. However, our use of global behaviors is a 
unique approach to behavior anticipation in this field. 

D. Human-Robot Interaction 

In the field of human-robot interaction, there have been 
several studies about mobile robots that provide services to 
people. For example, Dautenhahn et al. studied the appropriate 
behavior of a robot when it approaches a person, and found that 
the robot should approach people from the side but not the front 
[32]. Gockley et al. developed a natural way for a robot to 
follow a person [33]. Michalowski et al. observed how people 
approach a robot, and changed the robot’s behavior according 
to their approaching style [34]. Yamaoka et al. established a 
model for a robot to appropriately position itself to effectively 
explain exhibits [35]. Bennewitz et al. developed a technique 
for predicting trajectories of persons for avoiding persons 
around it [36]. The need for this is apparently due to a lack of 
observation capability, which is solved in our study by having 
laser range finders distributed in the environment. 

III. RECOGNITION SYSTEM 

Figure 1 shows the service framework presented in this paper. 
This section explains the details of the recognition system. 

A. Position 

We conducted our experiments in a popular entertainment 
and shopping arcade located by the entrance to Universal 
Studios Japan, a major theme park. We operated the robot 

within a 20 m section of the arcade, with shops selling clothing 
and accessories on one side and an open balcony on the other. 
The motion of people through this area was monitored using a 
ubiquitous sensor network consisting of six SICK LMS-200 
laser range finders mounted around the perimeter of the trial 
area at a height of 85 cm (Figure 2 and 3). 

A particle filtering technique was used to track people’s 
trajectories through this space. The location of each person in 
the scan area was calculated based on the combined torso-level 
scan data from the laser range finders. 

 
Figure 1. Service framework 

 

 
Figure 2. The shopping arcade and laser range finders. 

 

 
Figure 3. Placement of laser range finders 

In our tracking algorithm, a background model is first 
computed for each sensor, by analyzing hundreds of scan 
frames to filter out noise and moving objects. Points detected in 
front of this background scan are grouped into segments, and 
segments within a certain size range persisting over several 
scans are registered as human detections. 

Each person is then tracked with a particle filter, using a 
linear motion model with random perturbations. Likelihood is 
evaluated based on the potential occupancy of each particle’s 
position (i.e. humans cannot occupy spaces which have been 

Laser range 
finder

https://www.researchgate.net/publication/221568594_Predestination_Inferring_Destinations_from_Partial_Trajectories?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/222576305_Learning_and_Inferring_Transportation_Routines?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/237133614_Effects_of_Anticipatory_Action_on_Human-Robot_Teamwork?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/221473244_Natural_person-following_behavior_for_social_robots?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/4242015_A_spatial_model_of_engagement_for_a_social_robot?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/220122470_Learning_Motion_Patterns_of_People_for_Compliant_Robot_Motion?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
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observed to be empty) as well as its proximity to observed 
points. By computing a weighted average across all of the 
particles, x-y position is calculated at a frequency of 
approximately 37 Hz. This tracking technique provides quite 
stable and reliable position data, with a position accuracy 
measured to be +/- 6 cm for our environment. Further details on 
this algorithm are presented in [18]. 

To illustrate the robustness of the system in our field 
environment, we analyzed two sets of data from one of the days 
in the middle of our experimental data set. For this analysis we 
considered only trajectories of at least 5 seconds in length, and 
each data set contained 100 trajectories. The first set was taken 
starting at 11:30am, a time when very few people were passing 
through the area, and the other was taken at 5pm, when the area 
was more crowded. The morning data set lasted 42 minutes, 
with an average trajectory length of 17.1 seconds, and the 
evening data set lasted 12 minutes, with an average trajectory 
length of 18.0 seconds. 

For each of these data sets, the entry and exit times of each 
person passing through the space were identified manually by 
inspection of the raw laser scan data (this enabled more exact 
estimation of people’s positions and entry times than inspection 
of video data). Any tracking errors during this period were also 
recorded, e.g. if a person entered the space and was not tracked, 
if two people were mistakenly switched with each other in 
mid-trajectory, or if a trajectory was lost in the middle of the 
space and reacquired with a different ID. 

In fact, our system successfully tracked all people passing 
through the space in both cases. No tracking errors occurred, 
and no people entered the space without being tracked. 
However, the system did have some difficulty distinguishing 
couples walking close together. Couples were sometimes 
initially misinterpreted as a single person, but after a few 
seconds, the system always correctly identified them as two 
people. Since this phenomenon results in a short time lag before 
the system begins tracking the second person, we calculated the 
system’s tracking success rate as the ratio between the total 
amount of time people were successfully tracked to the total 
amount of time people were present in the area. This ratio is 
presented in Figure 4 for the two 100-trajectory datasets.   

 
Figure 4. Tracking success rate for two datasets． 
Based on this analysis, we consider our tracking system to be 

highly robust, particularly in terms of maintaining continuity of 

trajectories from beginning to end, an important requirement 
for the analysis we present in this paper. 

B. Local Behavior 

As defined earlier, “local behaviors” represent basic human 
motion primitives. We began our analysis with a classification 
system which uses SVM (support vector machine) to categorize 
trajectories based on their velocity, direction, and shape 
features. 

Specifically, the following features were used for the SVM 
to classify the local behaviors: 
(i) The end point of the normalized trajectory 

Normalization refers to a rotation of the trajectory to fit its 
starting point to the origin and its longest direction to the x axis 
(Figure 5 (a) and (b)). Then, three points were sampled from the 
normalized trajectory: at times N/3, 2N/3, and N seconds, 
where N represents the duration of the trajectory. At each point, 
four dimensions of features were retrieved: x-coordinate, 
y-coordinate, arc tangent of this x-y position, and the distance 
of this x-y position from origin. Overall, 12 dimensions of 
features were retrieved. 
 (ii) The size of rectangle that covers the normalized trajectory 

We retrieved the max value, min, and average value of 
x-coordinate and y-coordinate among all of the points sampled 
per 100ms in the N seconds of the trajectory. Overall, 6 
dimensions of features were retrieved. 
(iii) The angles of the trajectory 

As shown in the Figure 5 (c), we calculated a sub-angle in a 
trajectory. For this calculation, the trajectory was separated into 
three sub-trajectories, at time “0 to N/3”, “N/3 to 2N/3”, and 
“2N/3 to N” seconds. For each sub-trajectory, the angle 
between start and end point was calculated. In addition, we also 
calculate the maximum angle as well as deviation of the angles 
among each sub-trajectory, within a sliding 500ms-window for 
each 100 ms from the start to end of the sub-trajectory. Overall, 
9 dimensions of features were retrieved. 
 (iv) The velocity 

For each 100ms interval, an immediate “sub-velocity” was 
calculated. The average, min, max, and variance of the 
sub-velocities were used as features. In addition, travel 
efficiency was computed by calculating the overall velocity 
from the start point to the end point, and dividing this by the 
sum of all sub-velocities. (It is nearly 1.0 if the trajectory moves 
straight, and nearly 0.0 if it only oscillated at the same point). 
Overall, 5 dimensions of features were retrieved. 

In total there were 32 features. All of the features are float 
values and scaled within the range of 0 to 1. The SVM for the 
Style category uses all of the 32 features of (i) to (iv), while the 
SVM for the Speed category uses the features of (i), (ii), and 
(iv), the SVM for the Short-term style category uses the 
features of (i), (ii), and (iii), and the SVM for Short-term speed 
category use the features of (i) and (iv). Our SVM was 
implemented using LIBSVM [37]. The one-against-one 
method was used for multi-class classification [38]. For all 
SVM’s, an RBF Kernel (Gaussian Radial Basis Function 
Kernel) was used. 

https://www.researchgate.net/publication/220671199_Laser-Based_Tracking_of_Human_Position_and_Orientation_Using_Parametric_Shape_Modeling?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
https://www.researchgate.net/publication/5608645_A_Comparison_of_Methods_for_Multiclass_Support_Vector_Machines?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
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(a) Original trajectory  (b) Normalized trajectory  (c) Sub-angle 
Figure 5. Feature vector for calculating motion primitives. 

To include a wide variety of movement types, we initially 
defined the following four categories. Each category has about 
200 samples for learning, consisting of 2- or 5-second 
trajectory segments. We selected typical trajectory segments 
that fit with the concept of each class of the categories, labeled 
them by hand, and put them into the training data set. We did 
not include trajectories which were ambiguous between 
classes. 
(a) Style 
This category consists of the following six classes. It requires 
5.1 seconds of trajectory data for classification. 

-  straight (Figure 6 (a)) 
-  left turn (Figure 6 (b)) 
-  right turn (Figure 6 (c)) 
-  wandering (Figure 6 (d)) 
-  U-turn (Figure 6 (e)) 
-  not walking (Figure 6 (f)) 

We labeled 226 trajectories and tested the system with the 
leaving-one-out method, a cross-validation-method where each 
of the data elements is tested by using the remaining elements 
for training; i.e. we created 226 subsets, each of which has one 
unique trajectory for testing and the remaining 225 for training, 
and averaged the classification accuracy of the 226 subsets. It 
classified with 84.5% accuracy on average. The confusion 
matrix shows relatively-frequent confusion between U-turn 
and wandering, recognizing U-turn with 79.4% accuracy and 
wandering with 76.6% accuracy. 

 
(b) Speed 
This category consists of the following five classes. It requires 
4.9 seconds of trajectory data for classification. 

-  running 
-  fast-walk (Figure 7 (a)) 
-  idle-walk (Figure 7 (b)) 
-  stop : short stop is observed in a trajectory while some 

movements are also observed 
-  wait : only stopping, but no motion observed 
In the the labeling, we judged the difference between "idle 

walk" and "fast walk" based on the speed of the trajectory. The 

difference between “stop” and “wait” is defined by whether the 
trajectory remains stopped for the full duration or not. 

We labeled 166 trajectories and tested the system with the 
leaving-one-out method; it classified with 92.8 % accuracy on 
average. The confusion matrix shows frequent confusion 
between stop and wait, recognizing stop with 66.7 % accuracy. 

(c) Short-term style 
This category is similar to (a) Style, but to enable faster 
recognition we reduced the duration required for the 
classification. It requires 2.1 seconds of trajectory data for 
classification. 

-  straight 
-  left turn 
-  right turn 
-  U-turn 
-  not walking 

We labeled 150 trajectories and tested the system with the 
leaving-one-out method; it classified with 93.3 % accuracy on 
average. There was no particular confusion in the confusion 
matrix. 

(d) Short-term speed 
This category is similar to (b) Speed, but to enable faster 
recognition we reduced the duration required for the 
classification. It requires 2.2 seconds of trajectory data for 
classification. 

-  running 
-  fast-walk 
-  idle-walk 
-  stop 

We labeled 159 trajectories and tested the system with the 
leaving-one-out method; it classified with 95.6 % accuracy on 
average. There was no particular confusion in the confusion 
matrix. 

Note that each category requires different length of 
trajectories, which is the result of our minimization of the time 
to recognize each of these categories. For example, (c) 
Short-term style requires 2.1 seconds while (a) Style requires 
5.1 seconds, since Style has a category of wandering which is 
confused with U-turn more if the duration is smaller than 5.1 
seconds. Short-term style does not have the category of 
wandering, which make the system easily categorize even with 
a shorter duration of time. 

                
(a) Fast-walk               (b) Idle-walk  (c)Wandering (d) Stop 

Figure 7.  Example trajectories for local behaviors 

In the subsequent analysis, we merged several local behavior 
classes for simplicity. Within “Style”, the classes left-turn, 
right-turn, and U-turn were all merged into the wandering 
category. Within “Speed”, we merged stop and wait into the 
stop category. We also merged classes for short-duration and 
5-second behavior. Thus, we reduced the set to the following 
four local behaviors: fast-walk, idle-walk, wandering, and stop. 
Figure 7 shows examples of these local behaviors. We define 

              
        (a) Straight              (b) Left turn         (c) Right turn 

                  
(d) Wandering                (e) U-turn              (f) Stop 

Figure 6:  Examples of Style category 
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the position n
tP  of visitor n at time t  to include the x-y 

coordinates (x, y) as well as Boolean variables 1indicating the 
presence or absence of local behavioral primitives 

walkfastP  , 

walkidleP  , wanderingP , stopP .  

Each trajectory has a sequence of local behaviors 
represented by these Boolean variables at each time step t. The 
system split a segment of trajectory from the time step t to the 
past for the required length of each classifier, and sent it to the 
classifier. They remain undetermined if t is smaller than the 
minimum required time of SVMs, i.e. 2.1 seconds. 

IV. ANALYSIS OF ACCUMULATED TRAJECTORIES 

Based on the position and local behavior data thus obtained, 
an analysis was performed to obtain a higher-level 
understanding of the use of space and people’s global 
behaviors.  This analysis constitutes the foundation for the 
robot’s ability to anticipate people’s local behaviors. 

A. Data Collection 

Human motion data was collected for a week in the 
shopping-arcade environment, from 11am-7pm each day, 
including 5 weekdays and 2 weekend days. We chose this time 
schedule because the shops open at 11am, and the number of 
visitors drops after 7pm, after the theme park closes in the 
evening. 

In this environment, the major flow consisted of customers 
crossing the space from the left to the upper right or vice versa, 
generally taking about 20 seconds to go through. We removed 
trajectories shorter than 10 seconds, in order to avoid noise 
from false detections in the position tracking system. In all, we 
gathered 21,817 visitor trajectories.2 
 

B. Use of Space (Map) 

The first analysis task was to identify how the space was 
used, and how the use of space changed over time. We applied 
the ISODATA clustering method [39] to achieve this. First, we 
partitioned the time into one-hour segments categorized as 
weekday or weekend. We then partitioned the space into a 
25cm grid, mapping the environment into 2360 grid elements.  

The local behaviors represented by the Boolean variables are 
all mapped into the histogram prepared for each grid elements. 
Each grid element contains histogram data of local 
behaviors: ),( tiH walkfast , ),( tiH walkidle , ),( tiHwandering , and ),( tiHstop , 
where ),( tiH x  denotes the number of occurrences of local 
behavior x at time slice t within grid element i, which is 
normalized for each local behavior x. Specifically, we 

 
1  These Boolean variables allow each state to have a combination of 

fast-walk, idle, wander and stop. One 4-state variable might be appropriate 
depending on the purpose. For this study, our intention was to provide a local 
behavior classifier as capable as possible. 

2 In this study, we obtained approval from shopping mall administrators for 
this recording under the condition that the information collected would be 
carefully managed and only used for research purposes. The experimental 
protocol was reviewed and approved by our institutional review board. 

normalized each histogram ),( tiH x  to have a mean value of 0.0 
and a standard deviation of 1.0. 

To make the data set more manageable, we first combined 
time slices based on their similarity. The difference between 
time slices t1 and t2 is defined as: 

 
i x

xx tiHtiH |),(),(| 21                                                    (1) 

We then combined spatial grid cells where the distance was 
smallest and the grid was spatially connected. The distance 
between grid cells i and j is defined as: 

 
t x

xx tjHtiH |),(),(|                                                         (2) 

As is usual for this type of explorative clustering, we 
arbitrarily set the number of partitions to help us intuitively 
understand the phenomena occurring in the environment. We 
chose to use 40 spatial partitions and 4 temporal partitions. 
Figure 8 shows a visualized output of the analysis. The 
partitions are color-coded according to the dominant local 
behavioral primitive in each area. Blue (medium gray on 
monochrome printouts) represents the areas where the 
fast-walk behavior occurred more frequently than any other 
local behaviors. Thus, people tend to pass directly through this 
area, which can be thought of as “corridor” space. 

The areas where the idle-walk primitive occurred most 
frequently are colored with green (or light gray).  

(a) Weekday 11am–5pm
Weekend 12pm-1pm

  (b) Weekday 5pm-6pm

(c) Weekday 6pm-7pm (d) Weekend 11 am-12 pm,
 1pm-7pm  

 Busy walk,  Idle walk,  Wandering,  Stop

Figure 8. Analysis of the use of space 
In some areas, the use of space was very clearly observed to 

change as a function of time. The lower left area is in front of a 
shop. When the shopping arcade was busy in the evening, as in 
Figure 8 (b), with people coming back from the theme park, 
many people were observed to slow down in front of the shop, 
and the “corridor” space changed into “in front of shop” space 
with idle-walk becoming dominant (photo: Figure 9 (a)); 
however, when there were not so many people, such as midday 
during the week as in Figure 8 (a), these areas disappeared and 
became similar to other “corridor” space. The lower right side 
of the map represents the side of the corridor, where people 
tend to walk slowly when the arcade is busy (Figure 8 (b) and 

https://www.researchgate.net/publication/243779148_A_Novel_Method_of_Data_Analysis_and_Pattern_Classification?el=1_x_8&enrichId=rgreq-06816937-7c57-41ca-aab0-6e32ce2de06a&enrichSource=Y292ZXJQYWdlOzIyMDM5NjczMTtBUzoxNjI5MDgyMzUzNzg2ODhAMTQxNTg1MTc1ODg4NA==
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(c)); these areas also disappeared and became similar to other 
“corridor” space (Figure 8 (a) and (d)). 

 

   
(a) Idle-walk in front of a shop        (b) stop at a bench 

               
(c) stop at rest space                       (d) a map 

Figure 9. Examples of the actual use of the space 
 

The areas where the stop primitive was most frequent are 
colored with dark brown (or dark gray). In Figure 8, these areas 
can mainly be found in the upper center (photo: Figure 9 (b)) 
and the bottom right (photo: Figure 9 (c)). These areas contain 
benches, and can be considered “rest space”. 

In the upper center area, below the word ‘map’, there is a 
small space where stop is the dominant primitive in Figure 8 (a) 
whereas idle-walk is dominant in (b) through (d). A map of the 
shopping arcade is placed on that wall. Customers sometimes 
slowed down, stopped, and looked at this map (Figure 9 (d)). 
The statistical analysis clearly revealed this phenomenon as 
defining a distinct behavioral space. 

The areas where the wandering primitive was dominant are 
colored with pink (or very light gray). All maps in Figure 8 
show the space immediately in front of the shop as having this 
property. The areas where none of the primitives were 
dominant, such as the bottom-right space, are colored white. 
These areas were not used so much. 

To summarize, we have demonstrated that through this 
analysis technique, we can separate space into semantically 
meaningful areas such as the corridor, the space in front of the 
shop, the area in front of the map, and the rest space. It also 
reveals how usage patterns change over time, such as the 
change of dynamics in the space in front of the shop. 

C. Global Behavior 

Based on the accumulated trajectories, we analyzed how 
people visited the shopping mall. In this section we introduce a 
method of extracting typical global behaviors. 
1) Preparation: State chain models 

We analyzed trajectories based on the state chain model 
illustrated in Figure 10. That is, we converted n

tP , represented 
in x-y coordinates, to a sequence of states, },,{ i

t1
i
t0

i ssS   
based on spatial partitioning. 

i
ts  is defined as, 

}|{ n
i
t

i
t ApNns  , where An is the partition the point in 

trajectory p belongs to. In the example in Figure 10, the 
trajectory starting from partition 1, stayed in partition 1 for 3 
time steps, then entered briefly into partition 2, and moved back 
to the partition 1 …, which is represented as the sequence of 
states 1, 1, 1, 2, 1, … 

 
Figure 10: State chain model 

2) Distance between trajectories 
We calculate the distance between two state chains, iS  and 
jS , by using a DP matching method (widely used in many 

research domains, e.g. [40]), which is identical to the 
comparison of strings known as the Levenshtein distance. 
Figure 11 illustrates this trajectory comparison technique. Here, 
we set the distance between partitions as the distance between 
the centers of the partitions. The cost for “insert” and “delete” 
operations is calculated as this partition distance plus a constant 
parameter, which represents the tradeoff cost between time and 
space. 

  
 (a) two trajectories (b) comparison of state chains of trajectories 
Figure 11: Comparison of trajectories based on DP matching 

For the DP matching, we again partitioned the space into a 
25cm grid (2360 grid elements), to easily compare trajectories. 
The DP matching method was chosen for its simplicity and the 
fact that it does not require particular tuning of parameters. 
Since global behaviors naturally emerge through the 
interactions between people and their environment, we believe 
that it is best to minimize the number of parameters that need to 
be adjusted manually, keeping the process simple and 
generalizable. 

The trajectories are segmented into 500 ms time steps, and 
they are compared with each other based on the physical 
distance between them at each time step. To this is added a cost 
function, based on “insert” and “delete” operation costs in the 
DP matching, where we defined the cost of a single insertion or 
deletion to be 1.0 m. 

In addition, this state-chain representation reduces 
calculation cost. For example, we compared calculation cost 
based on raw trajectory iP  and state chain iS  for retrieving 
global behavior with a k-means clustering method from 28 
trajectories. The state-chain method costs 0.53 sec while the 
raw-trajectory-based method costs 9.56 sec. Thus, using the 
state chain is eighteen times faster. We cached the calculation 
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of distance between partitions in the state-chain-based method 
(that is, insert, delete, and substitute costs in DP matching), 
which also greatly improved the calculation speed. 
3) Clustering and Visualization 

We classified trajectories with a k-means method to identify 
typical visiting patterns. The distance between trajectories was 
provided from DP matching method mentioned above. We 
separated the space into 50 similarly-sized partitions by the 
k-means method [1] for this visualization, although the actual 
computation used 2360 partitions. We did not use these 2360 
partitions or the result of analysis of the space shown in Figure 
8 for the purpose of this visualization, since we are interested 
only in the transition pattern. K-means clustering of the space is 
one method which can provide similarly-sized polygonal 
spatial divisions distributed over the map with an arbitrary 
resolution, which are useful features for the visualization of 
global behavior. 

Figure 12 shows a visualization of the global behaviors at 
k=6. In this visualization, each area is colored according to its 
dominant local behavior primitive, and transitions between 
adjacent areas are shown as arrows. For example, blue 
represents fast-walk, and green represents idle-walk. Solid 
colors indicate a frequency of occurrence of at least one 
standard deviation above average, and lighter tints represent 
weaker dominance, down to white if the frequency is at least 
one standard deviation below average.  

The transitions between adjacent areas are computed for 
each pair of adjacent areas by counting the transitions in the 
state chains of the trajectories that belong to each global 
behavior. Frequent transitions between adjacent areas are 
shown by arrows. An arrow is drawn from partition i to j when 
(Nij – Nji) is larger than a threshold (here, set as 0.1) where Nij 
indicates a transition from i to j.  

Of course, we can analyze behavior patterns at any k value; a 
larger number k will result in more detailed separation of visiting 
patterns. 
 

We can interpret about six typical global behaviors from Figure 
12: 

(a) Pass through from right to left (7768 people) 
This pattern represents one of the major flows of people, who 
are coming back from the theme park (on the right) on their 
way to the train station (on the left). In this pattern, most of 
the areas are colored blue because the most frequent 
primitive in those areas was fast-walk. In front of the shop, 
there are some areas colored green, which represent spaces 
where people slow down to look at the shop. 

(b) Come from the right, and stop at the shop (6104 people) 
This pattern is similar to the pattern (a); but people either 
stop at the shop or go through the shop to go to the left area, 
as trajectories mostly disappeared at the shop. 

(c) Pass through from left to right (7123 people) 
This is also a major pattern, where people are coming from 
the train station and going in the direction of the theme park. 

In contrast to the patterns in (a) and (b), people rarely 
stopped or slowed down in front of the shop. 

(d) Rest at the rest space (213 people) 
In this pattern, people mostly spent time in the bottom right 
rest space (Figure 8 (c)) where benches were placed. 

(e) Around the rest space and right (275 people) 
Similar to the pattern in (d), but people moved around the 
right area more, and not around the shop area. Some people 
also stopped in front of the map or the upper rest area. 

(f) Around the shop and bench (334 people) 
People mainly came from the left side, walking slowly, and 
stopped in front of the shop as well as in front of the map. 

 

  
(a) From right to left          (b) From right and stop at the shop  

  
(c) From left to right                    (d) Rest at the rest space  

  
(e) Around the rest space and right    (f) Around the shop and bench 

 Busy walk,  Idle walk,  Wandering,  Stop

Figure 12. Six typical patterns of global behavior 

 
In summary, this analysis technique has enabled us to extract 

typical global behavior patterns.  These results show that most 
people simply pass through this space while a smaller number 
of people stop around the rest space or the map area. People 
tend to stop at the shop more often when they come from the 
right, a result which makes intuitive sense, as the shopping 
arcade is designed mainly to attract people coming back from 
the theme park. 

V. ANTICIPATION SYSTEM 

Robots differ from other computing systems in that they are 
mobile, and it takes some time for a robot to reach a person in 
need of its service. Thus, the ability to anticipate people’s 
actions is important, as it enables the robot to proactively 
pre-position itself so it can provide service in a timely manner. 

We assume here that the robot’s service is targeted towards 
people who are performing some particular local behavior, 
such as stop or idle-walk. The robot system uses the results of 
the analysis about the use of space and global behavioral 
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primitives to anticipate the occurrence of this “target behavior”. 
At the same time, the robot system tries to avoid people who are 
performing particular local behaviors, such as fast-walk, which 
we refer to as “non-target behavior”. To anticipate local 
behaviors, we use two mechanisms: location-based anticipation 
and behavior-based anticipation. 

A. Location-Based Anticipation 

As shown in Figure 8, the system has use-of-space 
information about the frequency of the local behaviors 
associated with spatial and temporal partitions. The robot uses 
this information to estimate the locations in which people will 
be statistically likely to perform the target behavior. In addition, 
we assume that a moving robot would attract people’s attention 
more than a robot standing still, which makes it easier for the 
robot to initiate interaction; thus, the system provides a path for 
the robot to roam around such locations, rather than choosing a 
single point at which to wait. 

Figure 13 shows an example anticipation map. The darker 
areas represent areas where the system anticipates both a high 
likelihood of the target behavior and a low likelihood of the 
non-target behavior. In the graph, areas where the likelihood of 
the non-target behavior is higher than the likelihood of the 
target behavior are shown in white. 

The robot roams through this high-likelihood area looking 
for people. At each time slice t, the system updates the roaming 
path, 

xP


, to maximize the roaming value calculated from 
candidates of all possible straight-line paths from 1m to 5m in 
length on the 25cm-grid, using the following equation.  





xPi

targetnontargetx tiHtiHtPvalueroaming_



)),(),((),(          (3) 

where ),(arg tiH ett  represents the histogram of the target behavior 
at the point grid i at time slice t (see IV B for the calculation to 
retrieve the histogram).  

After finding the best path, the system modifies it according 
to safety considerations; the robot is constrained to operate 
within a safety buffer of two grid elements from the outside of 
observed area (these areas are too close to a wall for the robot to 
pass through), so the points of the path are translated to the 
nearest points within the safe area. The black line in Figure 13 
represents its automatically-generated roaming path. 
 

  
(a) Weekday11-17, idle-walk            (b) Weekday 11-17, stop 

Figure 13. Example of anticipation map 

In one scenario, the robot's task might be to invite people to 
visit a particular shop. In this case, selecting idle-walk as the 
target behavior and fast-walk as the non-target behavior might 
be appropriate, since the robot wants to attract people who have 
time and would be likely to visit the store. Figure 13 (a) is the 

anticipation map for this scenario, calculated for the behavior 
patterns observed on weekdays between 11am and 5pm. 
Several areas away from the center of the corridor are colored, 
and the roaming path is set in front of the shop. Note that the 
best path in this case is slightly below the line shown in the 
figure, but this area is very close to the boundary of the 
observed map. The robot’s final path was translated about 
50cm away from the edge for safety reasons. 

In a different scenario, the robot’s task might be to entertain 
idle visitors who are taking a break or waiting for friends.  
Particularly because this shopping arcade was situated near a 
theme park, this is quite a reasonable expectation. In this case, it 
would be more appropriate to select stop as the target behavior 
and fast-walk as the non-target behavior. Figure 13 (b) is the 
anticipation map for this second scenario. In this case, only a 
few areas are colored. The roaming path is set to the 
bottom-right area. 

Note that since the roaming path was automatically 
calculated based on the anticipation map, no additional 
knowledge about the space was provided by designers. 

B. Behavior-Based Anticipation 

The second technique used for anticipating local behaviors is 
to estimate the global behaviors of people currently being 
observed, and then to use that information to predict their 
expected local behaviors a few seconds in the future. 

To ensure prediction accuracy, we used a large number of 
clusters for the global behavior analysis. We clustered the 
human motion data collected earlier into 300 global behavior 
patterns. For this analysis, since we are interested in behaviors 
several seconds in the future, we only used trajectories 
observed for a sufficient amount of time. We filtered out 
trajectories less than 20 seconds long, leaving 11,063 
trajectories for analysis. 
 Next, to predict the global behavior of a new trajectory which 

has been observed for T seconds, the system compares the new 
trajectory with the first T seconds of the center trajectory of 
each of the 300 clusters, using the same DP matching technique 
applied earlier for deriving the global behaviors. The cluster 
with the minimum distance from the new trajectory is 
considered to be the best-fit global behavior for that trajectory. 

 

 
Figure 14. Accuracy of the prediction of global behavior 

 
Figure 14 shows the prediction accuracy for observed 

trajectories from 0 to 25 seconds in length. Here, we used 6 of 

roaming path 

roaming path 
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the 7 days of data to create the prediction model, and tested its 
ability to predict the remaining one day of the accumulated data. 
The prediction is counted to be successful if the predicted 
global behavior matches with the one the trajectory belongs to, 
i.e. the classification result after observing the whole length of 
the trajectory. The accuracy accounts for only trajectories of 
total length greater than 20 seconds, as we filtered out shorter 
trajectories for calculating global behaviors. The result labeled 
“1st" represents the case where the best-fit global behavior at 
time T was the correct one (the cluster the trajectory finally fit 
with at completion). The result labeled “5 best” is the result if 
we define success to mean that correct global behavior falls 
within the top 5 results. Performance levels off after 20 seconds. 
Since there are 300 global behaviors, we believe that a success 
rate after 10 seconds of 45% and after 15 seconds of 71% for “5 
best” represents fairly good performance. 

After the most likely global behaviors are selected, the 
person's future position and local behavior are predicted based 
on an “expectation map." An expectation map is a data 
structure prepared a priori for each global behavior. For each 
500-ms time step along the trajectories, a 25-cm grid 
representation of the observed space is added to the map. Each 
element of this grid contains likelihood values for each of the 
four local behaviors to occur in that location at any time after 
that time step. These likelihood values are empirically derived 
from the original observed trajectories falling within the chosen 
global behavior cluster, and they represent the average 
frequency of the occurrence of each local behavior after that 
time step. We used the 5-Best result to create an expectation 
map for the person by combining expectation maps from each 
of the 5-Best global behaviors. 

Figure 15 shows expectation maps for various time 
increments. The solid circles represent the positions of people 
walking through the space, with the person of interest outlined 
in red. The expectation map for that person’s estimated global 
behavior is shown, where the area colored blue represents the 
area where fast-walk is expected, and the green area represents 
the area where idle-walk is expected. The three figures in the 
top row show the trajectory for person 1, who was first 
observed at time t1. The first figure shows time t1 + 5 sec, where 
the expected local behaviors can be seen tracing a path through 
the corridor, heading toward the upper right. In fact, this course 
was correctly predicted, and the person followed that general 
path. The second line is the trajectory for person 2, first 
observed at time t2. Here, since the person walked slowly, it 
predicted the course to the left with idle-walk behavior. At time 
t2+15, it started to predict the possibility of stop at the shop, 
which finally came to be true at time t2+22. (See multimedia 
attachment in IEEE Xplore for more dynamic examples of 
successful prediction) 

We measured the accuracy of position prediction for four 
time windows: 0-5, 5-10, 10-15, and 15-20 seconds in the 
future. Predictions were begun after a trajectory had been 
observed for 10 seconds, as the estimation of global behavior is 
not stable until then. We again used 6 days of data from the 
accumulated trajectories to predict the data of the remaining 

day. Our method predicts the future position as the 
center-of-mass of the expectation map. Figure 16 compares our 
method with position prediction based on the velocity over the 
last second. As the velocity method cannot account for motions 
like following the shape of the corridor, our method performs 
about twice as accurately. 

 

   
t1 + 5                          t1 + 10                         t1 + 15 

   
t2 + 5                          t2 + 15                          t2 + 22 

Figure 15.  Example of prediction of future behaviors 

 
Figure 16. Prediction accuracy for position 

 
Figure 17. Places used for the measuring the performance 

 
We then measured the correctness of the system’s 

predictions of the future positions and local behaviors for each 
person, evaluated in four places (indicated by three-meter 
circles in Figure 17) where qualitatively distinct behaviors were 
observed in the use-of-space analysis. For each place, at each 
moment, the system predicted whether the person would 
exhibit each of the local behaviors at that place for forecast 
windows of 0-5, 5-10, 10-15, and 15-20 seconds.  

Figures 18 and 19 show the system’s prediction performance. 
In each figure, the left graph shows the accuracy of the 
prediction for the case where the target local behavior occurred 
at each place, and the right graph show the accuracy of the 
prediction where the behavior did not occur. We define the 
occurrence of the local behavior as the case where the person 
appeared at the place in the predicted 5-second window (e.g. 
between 5 sec and 10 sec), and performed the target local 
behavior more than other local behaviors. The accuracy value 

person 2 here 

stop at shop 
is predicted 

person 1 here
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used for each person is the average across all predictions made 
for that person, and the value shown in the graph is the average 
across all people. 

Figure 18 shows that the prediction was fairly accurate for 
the stop behavior, particularly at the bench and the rest space. 
Prediction was 92% accurate at the bench even for 15-20 
seconds in the future, while non-occurrence was predicted with 
88% accuracy. This good performance was due to the fact that 
people who stay in these areas often stay for a long time. 
Results were more marginal at the map and shop, with 62% 
accuracy for occurrence and 63% for non-occurrence predicted 
at the shop for 0-5 seconds in the future. For 15-20 seconds in 
the future, the performance is still marginal, with 48% accuracy 
for occurrence and 71% for non-occurrence predicted at the 
shop. 

In contrast, as Figure 19 shows, the system predicted 
idle-walk with high accuracy 0-5 seconds ahead at the map and 
the shop. Even for 15-20 seconds ahead, the system was able to 
predict 33% of the occurrences at the shop as well as 86% of the 
non-occurrences, which we consider to be a good result, as it is 
rather difficult to predict walking behavior in the future. The 
prediction of occurrence was not successful at the rest space, as 
the system mostly predicted non-occurrence, since idle-walk 
rarely happened there. 

 
Behavior occurred at the place         Behavior did not occur at the place 

Figure 18. Prediction accuracy for stop behavior 

 
Behavior occurred at the place         Behavior did not occur at the place 

Figure 19. Prediction accuracy for idle-walk behavior 

 
Behavior occurred at the place         Behavior did not occur at the place 

Figure 20. Prediction accuracy for wandering behavior 

 
Behavior occurred at the place         Behavior did not occur at the place 

Figure 21. Prediction accuracy for fast-walk behavior 
 
Regarding the remaining two behaviors, for wandering 

(Figure 20), the system predicted over 50% of occurrences and 
85% of non-occurrences for 0-5 seconds ahead at all four 
places. For the 15-20 second window, it predicted 73% of 
occurrences and 93% of non-occurrences at the bench but not 
so well for the map and shop. It predicted fast-walk (Figure 21) 
at map and shop well until 10 seconds; for example, it predicted 
86% of occurrences and 60% of non-occurrences at the shop 
for 5-10 seconds in the future, though it does not predict the 
future well beyond 10 seconds. 

We believe these anticipation results are useful for the robot. 
The robot is designed to wait for people in areas where it 
anticipates frequent occurrence of the target behavior. 
Behavior-based anticipation performs particularly well in areas 
where the anticipated behaviors occur often, such as stop near 
the benches and rest space, and idle-walk in the corridor in front 
of the map and shop. As these are the areas predicted by the 
location-based anticipation method, the two anticipation 
techniques complement each other nicely. 

VI. SERVICE FROM A SOCIAL ROBOT 

In this section, we show examples where a social robot 
provides services using our system. A human designer defines 
the contents of the service as well as the context in which the 
robot should provide the service. Here, the notable point is that 
the designer only specifies the target local behavior, such as 
“stopping”. The robot system then automatically computes the 
information about space and global behavior so that the robot 
can efficiently wait for people in promising areas, and then 
proactively approach people who are anticipated to perform the 
target local behavior. 

For these services a robot has an advantage over cellular 
phones or other mobile devices, in that people do not need to 
carry any hardware; however, there is the additional challenge 
that robots need to approach the person quickly enough to start 
the service. For this purpose, anticipation plays an important 
role.  

A. Robot Hardware 

“Robovie” is an interactive humanoid robot characterized by 
its human-like physical expressions and its various sensors [41] 
(Figure 22). Robovie has a head, two arms, a body, and a 
wheeled mobile base. Its height and weight are 120 cm and 40 
kg. The robot has the following degrees of freedom (DOFs): 
two for the wheels, three for its neck, and four for each arm. On 
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its head it has two CCD cameras as eyes and a speaker for a 
mouth. It is equipped with basic computation resources, and it 
communicates with the sensor network via wireless LAN. We 
used a corpus-based speech synthesis [42] for generating 
speech. 

B. Entertainment Application 

The first example of an application that we would like to 
discuss is an entertainment robot, which interacts with people 
in the form of chatting. As mentioned earlier, the shopping 
arcade is next to an amusement park, so it is a reasonable for the 
robot to be entertaining people who have free time. In addition, 
we think that such an entertainment service would be 
reasonable for a robot in other environments as well, as robots 
today are still an exciting novelty. 

The chat was about the attractions in the amusement park. 
For example, the robot says, “Hi, I'm Robovie. Yesterday, I saw 
the Terminator at Universal Studios. What a strong robot! I 
want to be cool like the Terminator. 'I’ll be back...' ”. We set the 
target local behavior as stop, and non-target as fast-walk, in 
order to serve people who are idle. 

We conducted a field trial to investigate the effectiveness of 
the system. Figure 23 is a scene where the robot is approaching 
a person who is “stopping”. Based on the anticipation 
mechanism and its current position, the robot set its roaming 
path near the bench and waited for a person to approach. When 
the robot predicted that a detected person would probably do 
the stop behavior, the robot began positioning itself near her 
general area (pre-approach) (Figure 23 (a)). When she came in 
front of the shop, she stopped (partly, we assume, because she 
was intending to stop regardless of the robot, and partly 
because she noticed the robot approaching her). Once she 
stopped, the robot approached her directly, and they had a chat 
(Figure 23 (b)). This is a typical pattern illustrating how people 
and the robot started to interact. Overall, people seemed to 
enjoy seeing a robot that approached them and spoke. 

To evaluate the performance, we compared the situation with 
the developed system “with anticipation”, and “without 
anticipation”, and measured how much the anticipation 
mechanism improved the efficiency. In the “without 
anticipation” condition, the robot simply approached the 
nearest person who is doing the stop behavior. We measured 
the performance for one hour in total for each condition. We 
prepared several time slots and counter-balanced the order.   

Figure 24 shows the number of people to whom the robot 
provided services. Due to the novelty of the robot, people often 
initiated interactions on their own; in such cases, the 
anticipation mechanism is irrelevant. Thus, we classified the 
robot’s interactions into two categories. The first case, 
“robot-initiated”, is the situation where the robot initiated the 
service by approaching the person and entering into 
conversation distance. Thus, the number of “robot initiated” 
services indicates how the robot’s anticipation system 
improved the efficiency of the service. The second case, 
“person-initiated”, is the situation where the person approached 
the robot while it was talking to someone else. Figure 25 shows 

one of such scenes. In this scene, when the robot was talking 
with the girls, a child came from the left. When the girls left, the 
child stood in front of the robot to start talking with it. 

 

 
Figure 22. Robovie 

 

    
(a)                          (b) 

Figure 23. A robot approaching a person to chat 
 

 
Figure 24. The number of services provided 

 

   
(a)                           (b)                       (c) 

Figure 25. A child initiates an interaction with the robot 

 
The results in Figure 24 indicate that the number of 

“robot-initiated” services in “with anticipation” is much larger 
than “without anticipation.” In other words, anticipating 
enables the robot to provide the service more efficiently. Due to 
the novelty factor of the robot, the number of “person-initiated” 
services is quite large. We believe that in the future when 
robots are no longer so novel to people, there will be less 
person-initiated interaction, and the results concerning 
anticipation will become much more significant. 
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C. Invitation Application 

The second example is one in which the robot recommends 
and invites the customer to visit a shop. In the shopping arcade, 
attracting people’s attention to shops and products is an 
important task. We believe that this is also a reasonable service 
to expect from a robot, as the novelty of robots makes them 
very effective in attracting people’s attention. The contents the 
robot provided were simple; for example, the robot said, "Hello, 
I'm Robovie. Do you enjoy shopping? I'd like to recommend 
this shop, where they sell clothes by the kilogram!" Whenever 
it mentioned a shop, it pointed the direction of the shop with a 
reference term “this” or “that” [43]. 

We chose idle-walk as the target local behavior, because 
people who are walking slowly might be window-shopping. 
We set the non-target local behavior as fast-walk, so as not to 
bother people who seem uninterested in shopping. We used 
anticipation and the pre-approach function for the idle-walk 
behavior; when the robot predicted a person’s future behavior 
as idle-walk, it moved towards that person’s location. 

We ran a field trial with the invitation robot in the shopping 
arcade as well. Just as in the entertainment application, the 
robot modified its behavior in accordance with the anticipation 
mechanism; the robot roamed around in front of the shop, 
where idle-walk was anticipated to be most likely, and 
approached people who were window-shopping.  

In the demonstration, many people were interested in the 
robot and listened to its invitations. Figure 26 (see multimedia 
attachment in IEEE Xplore as well) shows an impressive 
example where the robot approached a couple who were 
performing idle-walk. When the robot pointed to the shop and 
gave its recommendation (Figure 26 (c)), they smiled with 
surprise to see a robot performing a real business task. After the 
robot mentioned the shop, the woman walked directly to the 
shop and entered it (Figure 26 (d)). Observing such behavior 
indicates that such an invitation task can be a promising 
application. As indicated above, the robot was able to attract 
people’s attention and redirect their interests to shops and 
products. 
 

  
(a)                                                          (b) 

  
(c)                                                      (d) 

Figure 26. A robot successfully inviting a person to a shop 
 

VII. DISCUSSION 

A. Does the presence of the robot affect global behavior? 

Our model is based on data recorded without having a robot 
in the environment. Thus, the system tried to predict people’s 
behavior independent of the presence of the robot. However, as 
a robot is still a novel object, some people were attracted by the 
robot, slowed down, approached the robot, and even talked to 
the robot. In this case, the prediction cannot be correct, since 
such the behaviors are not in the model. 

For the application shown in this paper, this had a positive 
effect on the robot’s ability to provide the service. Even when 
the prediction from the robot was incorrect, as the robot 
approached, sometimes the person was nevertheless attracted 
by the presence of the robot, and stopped, which enabled the 
robot to provide its service. 

For a different possible application such as a delivery task 
where the robot tries to avoid people in idle-walk and stop, 
however, this would affect the robot’s ability negatively, as the 
robot’s presence might attract a busy person to stop, and as a 
result the robot’s route would be blocked. Thus, it will be 
useful to create a behavior model incorporating the effects of 
the robot. 

B. To what extent is accuracy of positioning required? 

In this study, we used a robust and accurate positioning 
technique with laser range finders; however, the whole 
approach does not depend on the positioning algorithm. In our 
previous work [1], we reported the analysis of global behavior 
where tracking was performed with RFID tags and readers, 
which provides people’s position with 2.8 m error in an 80 x 40 
m space. Like that example, our method is applicable for 
trajectories obtained through a different positioning technique. 
On the other hand, the classification of local behavior is based 
on some details of the position data. Thus, better positioning 
techniques will provide a better performance in local behavior 
classification. 

One important characteristic of our positioning technique is 
robustness in terms of the continuity of the trajectory. Our 
method of analysis of global behavior requires that the whole 
length of the trajectories be observable. Thus, our method can 
be used with any tracking system that provides robust 
continuity of trajectories, even if it provides less positioning 
accuracy, e.g. our example with RFID tags and readers, but 
might be not feasible using a method without robustness in 
tracking. 

C. Other possibilities of services with robots 

Since we intended to highlight the connection between the 
robot and the infrastructure with ubiquitous sensors, we 
focused on the beginning part of the service (finding a person, 
approaching, and initiating conversation), and show two simple 
examples of services such a robot could provide. These 
services are appropriate under the situation where a robot is 
novel to people. Even such simple services provide enough 
value to people who are eager to experience an interaction with 
the robot. 

As a future scenario, we can extend the service by having a 
designer in the context design. For example, many people 
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stopped in front of the map, which can be seen in the analysis of 
the use of space; after discovering this fact, we can design a 
robot to provide guidance services for a person who is standing 
in front of the map. 

D. Other Possible Applications 

We believe that the infrastructure shown in the paper can be 
useful for other systems, e.g. ubiquitous computing 
applications. One possible direction is to apply it to ambient 
intelligent environments, in which facilities (robots, display, 
music, illumination, etc.) are proactively controlled according 
to the types of users. For instance, an electronic poster could 
anticipate who is likely to stop nearby, and change its 
advertisement content in advance to something targeted to that 
person. 

Another possibility is to combine it with mobile devices. 
Although GPS and WiFi have been used for locating people, 
laser range finders can provide more accurate positioning. The 
information provided by the infrastructure developed here 
could also complement other location-based services. For 
instance, if a user with a mobile device providing pedestrian 
navigation information entered a space with this infrastructure 
available, the device could then present additional information 
appropriate to that user’s anticipated global behavior. 

E. Privacy Concerns 

Systems operating in public spaces should be carefully 
designed to protect the privacy of people. In our application, 
the system does not identify individuals (e.g. names), and it 
finishes tracking people when they leave the environment. We 
believe that this is a privacy-safe application. When the system 
is scaled up (e.g. extended to cover a large area, or associated 
with personal information), privacy should be more carefully 
considered. 

VIII. CONCLUSION 

We reported a series of abstraction techniques for retrieving 
information about people’s behavior from their trajectories. 
Based on robust tracking with multiple laser range finders, 
more than ten thousand trajectories have been accumulated. 
Clustering techniques revealed how they used the space as well 
as their global behavior in the environment. Our service 
framework includes an anticipation system: it utilizes 
abstracted information to send a robot to provide services to 
people who are exhibiting a pre-defined local behavior 
associated with a particular service. It is notable that designers 
need to only specify target local behavior to use the anticipation 
system. 

Results from our field trial demonstrated the effectiveness of 
the service framework, and also indicated that entertainment 
and invitation are promising applications for the robot. People 
appeared excited about the presence of the robot, enjoyed 
interacting with it, and sometimes followed its invitations. The 
service framework developed here enables the robot to provide 
such services in a real shopping arcade. Further details about 
people’s response to the robot were examined in more detail in 

succeeding studies, e.g. a study of social behavior in 
approaching humans [44] and integration of different 
capabilities of robots [45], which are based on the techniques 
and service frameworks reported in this paper.  
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