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Abstract Learning human-robot interaction logic from 

example interaction data has the potential to leverage “big data” 

to reduce the effort and time spent on designing interaction 

logic or crafting interaction content. Previous work has 

demonstrated techniques by which a robot can learn motion and 

speech behaviors from non-annotated human-human 

interaction data, but these techniques only enable a robot to 

respond to human-initiated inputs, and do not enable the robot 

to proactively initiate interaction. In this work, we propose a 

method for learning both human-initiated and robot-initiated 

behavior for a social robot from human-human example 

interactions, which we demonstrate for a shopkeeper interacting 

with a customer in a camera shop scenario.  This was achieved 

by extending an existing technique by (1) introducing a concept 

of a customer yield action, (2) incorporating interaction history, 

represented by sequences of discretized actions, as inputs for 

training and generating robot behavior, and (3) using an 

“attention mechanism” in our learning system for training robot 

behaviors, that learns which parts of the interaction history are 

more important for generating robot behaviors. The proposed 

method trains a robot to generate multimodal actions, consisting 

of speech and locomotion behaviors. We compared this study 

with the previous technique in two ways. Cross-validation on 

the training data showed higher social appropriateness of 

predicted behaviors using the proposed technique, and a user 

study of live interaction with a robot showed that participants 

perceived the proposed technique to produce behaviors that 

were more proactive, socially-appropriate, and better in overall 

quality. 

 
Keywords: Human-robot interaction, data-driven learning, learning 

by imitation, social robotics, service robots, proactive behaviors. 

1    Introduction 

The vision of humanoid robots providing service through 

natural conversational interaction, once a dream of science 

fiction, is now closer than ever to becoming a reality (Satake et 

al. 2015; Triebel et al. 2016; Jayawardena et al. 2016; Shiomi 

et al. 2009). With the arrival of commercial humanoid robot 

platforms like Pepper, social robots have begun to appear in 

commercial and public spaces. However, the problem of how 

to develop social interaction logic for conversational robots, 

including interactive dialog and interactive motion planning, is 

still a relatively young and unexplored research domain. 

Some works in HRI have already demonstrated techniques 

for learning speech and motion behavior by imitation from 

human behavior captured from live interactions (Liu et al. 

2016) and online games (Breazeal et al. 2013; Orkin and Roy 

2007). These studies applied data-driven techniques to learn 

application logic through imitation of human behavior, as 

opposed to using a more traditional approach of manually 

designing interaction logic. As the availability of machine 

power for learning and the availability of large data sets 

increase, we propose that for situations where large amounts of 

example human-human interaction data is available, such data-

driven approaches could produce more reliable interaction logic 

and require less effort than manual programming.  

A typical approach to designing interaction logic for robots 

is to specify the robot’s behavior in terms of responses to human 

actions or commands (Orkin and Roy 2009; Liu et al. 2016; 

Breazeal et al. 2013) . Such approaches result in fundamentally 

passive systems, in which the robot only responds to explicit 

commands or actions from the human. However, many real 

social situations are mixed-initiative, and it is important for a 
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robot not only to react to a person’s actions, but to proactively 

take initiative as well. For example, a good museum guide not 

only answers questions about an exhibit, but should also ask 

questions back and provide interesting anecdotes about the 

exhibit to the visitor. Likewise, in a shopping scenario, a 

proactive shopkeeper would take the initiative to explain 

different product features to a customer.  

Nevertheless, learning proactive behaviors in a data-driven 

way without hand-crafted rules or an explicit model of user’s 

intention (Schrempf et al. 2005; Pandey et al. 2013) can be 

difficult, as rules for generating reactive versus proactive 

behavior can have different requirements. For example, in a 

shopping scenario, a reactive response to a customer’s question 

may depend primarily on the customer’s question itself, 

whereas a proactive behavior, in which the shopkeeper decides 

to take the initiative to do something (e.g. introducing a new 

product) as a result of the customer yielding his turn, may 

depend more strongly on interaction history or context. 

However, such contextual sensitivity is difficult to capture, and 

the naive injection of context information may introduce 

unnecessary noise, making the data too sparse and non-

repeatable for the robot to learn an appropriate action. The 

question remains open as to how a robot can simultaneously and 

effectively learn the rules for generating both user-initiative and 

self-initiated actions.  

In this work, we will address the question of how to learn 

both reactive and proactive robot behaviors from human 

interaction data. In previous work (Liu et al. 2016) we proposed 

a technique capable of learning social interaction logic for a 

robot in response to a human’s speech and motion actions. 

However, that system is unable to generate proactive behavior, 

e.g. the robot does nothing unless the customer takes an action.   

Thus, we propose three extensions to our previous work. 

First, we introduce a concept of a “yield action” enabling the 

robot to identify opportunities for a proactive action to be 

generated. Second, since proactive behaviors are often sensitive 

to the context of the interaction, we propose to incorporate 

interaction history as a training input. Third, we use an 

attention mechanism in our learning system, which has the 

ability to “attend” and learn which parts of the interaction 

history are important when predicting robot behaviors. In this 

work we will present this proposed architecture and 

demonstrate through offline analysis and live interactions with 

users that the proposed system can effectively reproduce 

proactive behavior learned from human interaction data.    

2    Related work 

Since learning both reactive and proactive behaviors for a 

social robot is novel, no previous study has reported an 

integrated method to address its whole process, although parts 

of the learning problem have been addressed to some degree. In 

this section, we report related works on some aspects of 

learning social behaviors. 

2.1    Learning social behaviors from data 

Several data-driven approaches have been applied to learning 

interactive behaviors for social robots. For example, Young et 

al. used learning from demonstration to generate real-time 

interactive paths for an animated characters and robots to match 

the style of interactive motion behaviors, based on a pattern-

matching algorithm (Young et al. 2013; Young et al. 2014).   

Frameworks focused on crowdsourcing have been developed 

to enable learning of overall interaction logic from data 

collected from simulated environments, such as The Robot 

Management System framework (Toris et al. 2014) and The 

Mars Escape online game (Breazeal et al. 2013; Chernova et al. 

2011). Remote users can interact collaboratively either in an 

online game, or through the web, and the interaction data are 

logged and used to develop HRI behaviors in a real autonomous 

robot. Our work complements these approaches by considering 

crowd-based data collected directly from human-human 

interaction using sensors in a physical environment, which 

presents unique challenges regarding resolving noise from 

sensor data, abstracting natural variations of human behavior, 

and discretizing actions for a robot to reproduce. 

The use of real human interaction data collected from sensors 

for learning interactive behaviors has been investigated in some 

works. The robot JAMES was developed to serve drinks in a 

bar setting, in which a number of supervised (i.e. dialog 

management) and unsupervised learning techniques (i.e. 

clustering of social states) were applied to learn social 

interaction (Keizer et al. 2014). Admoni and Scassellati 

proposed a model using empirical data from annotated human-

human interactions to generate nonverbal robot behaviors in a 

tutoring application. The model can simultaneously predict the 

context of a newly observed set of nonverbal behaviors, and 

generate a set of nonverbal behaviors given a context of 

communication (Admoni and Scassellati 2014). Similar to these 

works, we use data from human-human interaction for learning 

robot behaviors, but we adopt a completely hands-off approach, 

with no human annotation needed for abstraction of social states 

or for robot behavior generation. 

2.2    Proactive robot behaviors 

Strategies for generating proactive robot behavior, in part, 

have been addressed in other works. In Rozo et al.'s work (Rozo 

et al. 2016), a robotic manipulator learns to complete a pouring 

and a handover task, in which they empirically predetermined 

6 states the robot arm should be in. They achieve this by 

exploiting the temporal patterns (i.e. sequence of states) 

observed in the learning phase using an adaptive duration semi-

Markov Model (ADHSMM) to generate state sequences and 

durations for the arm trajectory. Likewise, Huang et al. 

investigated proactive and reactive collaboration strategies that 

take account of real-time awareness of the task status of its user 

in performing handover actions between a human and robot 

manipulator (Huang et al. 2015). Other works focus on 

recognition of human intention in order to proactively decide 

when to complete the handover task (Schmid et al. 2007) 
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(Schrempf et al. 2005; Awais and Henrich 2012). For the most 

part, a typical objective for these foregoing works is to learn 

state sequences or durations using techniques like HMM, where 

the states are defined a priori based on domain knowledge of a 

specific, structured task. In contrast, our work addresses an 

open-ended problem of learning social interaction tasks in an 

unknown domain, where actions and states are not 

predetermined. The technique we propose begins from the 

problem of retrieving clusters from sensor data of 

unconstrained natural language and motion trajectories, and 

learns common transition patterns among them, including 

proactive behavior, using a deep neural network (DNN). 

In the context of social robots, some works focus on how to 

better equip the robot to initiate interaction in a friendly and 

natural manner (Mutlu et al. 2009) or encourage people to 

initiate conversation (Robins et al. 2009) (Hayashi et al. 2007). 

The use of proxemics has also been investigated for initiating 

interaction, such as feature representations for analyzing human 

spatial behaviors (Bauer et al. 2009) and developing generative 

model for approaching people (Satake et al. 2009) and 

maintaining spatial formation (Shi et al. 2011; Michalowski et 

al. 2006). Our work builds upon these studies by incorporating 

proxemics models for human-robot interaction, using them to 

support the higher-level goal of learning overall interaction 

logic, which combines proxemics, locomotion, and dialogue.   

2.3    Learning from history 

Some techniques have been developed for learning robot 

behaviors from history, such as goal-directed and habitual robot 

behaviors through a Bayesian dynamic working memory 

system (Viejo et al. 2015), or incorporating history in learning 

for mobile robots (Michaud and Matarić 1998; Mohammad and 

Nishdia 2012). Although our work also learns from history, we 

believe our work is closer to fields of language or dialog 

learning, where speech is a major part of the interaction. 

Regarding learning from history for dialog in particular, 

many techniques involving deep neural networks have been 

developed recently for handling language-related tasks, which 

are inherently sequential and require some level of history or 

memory. Recurrent neural networks  (RNN) (Mikolov et al. 

2010) are often used for tasks like language processing, and 

Long Short-Term Memory (LSTM) (Hulme et al. 1991) 

techniques are often used for tasks such as word-by-word 

machine reading, where the meaning of a sentence must be 

interpreted in the context of previously encountered words 

(Cheng et al. 2016). A related technique, which we use in this 

work, is supplementing a neural network with an attention 

mechanism, which learns which part of an input sequence is 

important for predicting a response (Sukhbaatar et al. 2015; 

Bahdanau et al. 2014; Hermann et al. 2015). While several 

algorithms have been proposed for learning from history, it is 

still unclear how effective they can be in the problem space of 

learning human-robot multimodal interaction from noisy data, 

which is the main objective of our work. 

3    Data Collection 

This section introduces our scenario for data collection, a 

camera shop, as well as the procedure and some observed 

behaviors of the participants. 

3.1    Scenario 

We chose a camera shop scenario for this study as an 

example of the kind of repeatable interaction for which this 

technique would be most useful. We set up a simulated camera 

shop environment in our laboratory with three camera models 

on display, each at a different location (Fig. 1), and we asked a 

participant to role-play a proactive shopkeeper. The shopkeeper 

interacted with participants role-playing customers, walking 

with the customers to different cameras in the shop, answering 

questions about camera features, and proactively introducing 

new cameras or features when the customers had no specific 

questions. We recorded the speech and motion data of both the 

shopkeeper and the customers during these interactions. 

3.2    Sensors 

To capture the participants’ motion and speech data, we used 

a human position tracking system to record people’s positions 

in the room, and we used a set of handheld smartphones for 

speech recognition. 

The position tracking system used data from 20 Microsoft 

Kinect 1 sensors, arranged in opposing rows on the ceiling to 

minimize interference, with a lateral spacing of 1.9m. The 

arrangement is similar to that shown in (Glas et al. 2015). 

Particle filters were used to estimate the position of each person 

in the room based on point cloud data (Brscic et al. 2013). 

Speech was captured via a smartphone with a hands-free 

headset, using the Android speech recognition API to recognize 

utterances and sending the text to a server via Wi-Fi. Users were 

required to touch the mobile screen to indicate the beginning 

and end of their speech. Although it would be ideal to passively 

collect speech data from microphones in the environment and 

automatically detect the start and stop of speech activity, 

reliable technologies to do this are not yet widely available. 

Location data for the shopkeeper and the customer were 

    
Fig. 1 Environment setup for our study, featuring three camera displays. 

Sensors on the ceiling were used for tracking human position, and 

smartphones carried by the participants were used to capture speech. 
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recorded at a rate of 20 Hz.  Speech data were recorded at the 

start and end of each speech event, as signaled by participants 

tapping on their Android phones. 

3.3    Participants 

The customer participants had varied levels of knowledge 

about cameras and were selected based only on English-

speaking ability (due to the use of speech recognition in the 

study). We employed a total of 9 customer participants (8 male, 

1 female, average age 34.1, s.d. 3.9). 

To select a participant for the role of a proactive shopkeeper, 

we interviewed participants and observed trial interactions. We 

asked customer participants to provide feedback in terms of 

how proactive, helpful, and interested each shopkeeper was. We 

selected one shopkeeper participant (male, age 54) with a 

naturally outgoing personality and a great interest in cameras 

based on our interview with him, as well as the feedback from 

the customers. He played the shopkeeper in all interactions. 

3.4    Procedure 

For this data collection, the shopkeeper was encouraged to 

answer any questions the customer had, and also to take 

initiative in assisting the customer, either by introducing new 

camera features or presenting a different camera. The customer 

participants were instructed to browse as much or as little as 

they liked, and told that they could ask questions about cameras 

or simply listen to the shopkeeper’s recommendations.  

To create variation in the interactions, customer participants 

were asked to role-play in different trials as advanced or novice 

camera users, and to ask questions that would be appropriate for 

their role. Some camera features were chosen to be more 

interesting for novice users (color, weight, etc.) and others were 

more advanced (High-ISO performance, sensor size, etc.), 

although they were not explicitly labeled as such. 

Customer participants were not given a specific target feature 

or goal for the interaction, as we were mostly interested in 

capturing the shopkeeper’s proactive sales behavior. All 

participants were instructed to focus their discussion on the 8 to 

10 features listed on the camera spec sheet, to minimize the 

amount of “off-topic” discussion. 

Customer participants conducted 24 interactions each (12 as 

advanced and 12 as novice) for a total of 216 interactions. 17 

interactions were removed due to technical failures of the data 

capture system and one participant who did not follow 

instructions. The final data set consisted of 199 interactions, 

with average duration of 3 minutes and 16 seconds per 

interaction. This includes a total of 2568 shopkeeper utterances 

(with an average of 19.53 words per utterance) and 2299 

customer utterances (with an average of 10.88 words per 

utterance). This data set is available online1.   

3.5    Observed Behavior 

Overall, the shopkeeper participant followed our suggestions 

 
1 http://www.geminoid.jp/dataset/camerashop/dataset-camerashop.htm 

and acted in a very proactive way. He often spoke in long, 

descriptive utterances and volunteered extra information when 

answering questions. In cases where a customer was silent or 

not asking questions, he frequently provided additional 

information about a camera or guided the customer to a new 

camera, so we considered his behavior to be fairly proactive and 

thus appropriate for this study. 

This interaction data differed from that of the previous study 

(Liu et al. 2016) in a few ways. First, the shopkeeper’s 

utterances tended to be much longer and more complex, 

sometimes talking about 2 or 3 topics in one sentence.  Second, 

the shopkeeper often proactively spoke if some silence had 

elapsed after his last utterance. Third, the customers 

demonstrated more “backchannel” utterances. For example, a 

customer might say, “oh, ok,” after listening to an explanation, 

but not ask a follow-up question. In such situations, the 

shopkeeper in this study often performed proactive behaviors, 

such as volunteering more information about the current camera 

or continued his previous explanation. 

We performed an analysis of the customer utterances to 

identify whether an utterance required a response (such as a 

question or a request) or did not require a response (such as a 

backchannel utterance). We found that 527 (22.8%) of the 

customer’s 2299 utterances did not seek a response from the 

shopkeeper. There were also 209 instances when the customer 

did not speak or move for some time, such as when reading the 

spec sheet or playing with the camera, and the shopkeeper took 

the initiative to perform some proactive behavior. 

Table 1 illustrates an example interaction. The customer first 

asks about a lightweight camera, prompting the shopkeeper to 

show the customer to the Sony camera. The shopkeeper then 

answers the customer’s question about the price. Next, after 

several seconds of silence, the shopkeeper proactively presents 

more information about a different feature. Similar to the 

provided example, we observed that many customers used a 

Table 1. An example interaction from the data collection 

C: Customer, S: Shopkeeper 

 

(Shopkeeper and Customer talking about Sony) 

C: Proably yeah.. I'm looking for something lightweight but good quality. 
S: This Sony camera takes pictures that are almost as good as a top-end 

professional camera but it only has half the weight, please pick it up and 

have a try. 
C: Yeah actually this weighs alright... how much is it? 

S: This is only $550 so it's a quarter to a fifth of the price of a high-end 

professional camera 
C: (Silence for 5 seconds) 

S: the picture quality is almost as good as DSLR because it's a mirrorless 

camera ….. 
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variation of fillers (e.g. “you know”, “like”) and backchannel 

(e.g. “I see”) in their utterances. In addition, some customers 

did not just ask direct questions, but also provided other 

information (e.g. “Yeah actually this weighs alright how much 

is it?”). For these reasons, we consider the interaction data to be 

quite natural and fairly unconstrained.  

4    Proposed technique 

4.1    Overview 

In order to reproduce both reactive and proactive behaviors 

for a robot, we used a sequence of techniques that enable 

behavior contents and interaction logic to be directly learned 

from noisy sensor data without human intervention. An 

overview of the techniques is shown in Fig. 2, which illustrates 

how behaviors are learnt from human-human interaction and 

generated in human-robot interaction. The key steps of the 

techniques are listed here: 

1. Abstraction of typical behavior patterns (Sec. 4.2): 

Continuous streams of sensor data are abstracted into 

typical behavior patterns, and the corresponding joint state 

vector and robot action are defined.  

2. Defining yield actions (Sec. 4.3): To enable the robot to 

generate proactive behavior, we introduce the concept of a 

yield action, which represents the moment when an 

interactant yields his turn and does nothing, allowing the 

robot to take initiative. 

3. Incorporating interaction history (Sec. 4.4): We 

introduce interaction history by concatenating the last 𝑘 

joint state vectors to provide contextual information for 

generating proactive behavior.  

4. Learning to attend to history (Sec. 4.5): To improve the 

efficiency of learning, we propose the use of an "attention" 

mechanism which ascribes weights to the relative 

importance of various steps of interaction history as inputs 

to learn appropriate behaviors.  

 

 In this work, we used the techniques presented in our 

previous study (Liu et al. 2016) for Step 1, while Steps 2-4 

constitute the novel contributions of this work which enable 

proactive behavior generation.   

4.2    Abstraction of typical behavior patterns 

In order to learn effectively despite the large variation of 

natural human behaviors and noisy inputs from the sensor 

system, the continuous stream of captured sensor data needs to 

be discretized by time into behavior events, and then abstracted 

into common behavior patterns. Here we briefly describe our 

techniques:  

• We used unsupervised clustering and abstraction to 

identify utterance vectors, typical utterances, stopping 

locations, motion paths, and spatial formations of both 

participants in the environment.  

• An interaction is discretized into a sequence of actions, 

which are defined whenever: (1) a participant speaks an 

utterance and/or (2) a participant’s motion target changes.  

• For each action detected, the abstracted state of both 

participants at the time is represented as a joint state vector, 

with features consisting of their abstracted motion state the 

utterance vector of the current spoken utterance. 

• For each observed shopkeeper action, we define a 

corresponding executable robot action, consisting of a 

typical utterance (e.g. ID 5) and a target spatial formation 

(e.g. present Nikon). When executed, this would cause the 

robot to speak the typical utterance “It’s $68” associated 

with utterance ID 5 and execute a motion to attain the 

formation of present Nikon.  

Fig. 3 shows an example of how joint state vector and robot 

action are abstracted from the sensor data. These data 

processing and abstraction techniques closely follow the 

procedure followed in our previous work (Liu et al. 2016), and 

additional details are presented in the Appendix. 

 
Fig. 3 Example of abstraction for joint state vector and robot action 

How much? It’s $68

Joint state vector

5 (“It’s $68”)

F
ID

Robot Action

C

F

S
U

Present Nikon

Stopped (Nikon)

Stopped (Nikon)

Utterance vector of “how much?”

Present Nikon

 
Fig. 2 Overview of the proposed system elements 
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4.3    Definition of yield actions 

To enable the robot to predict the timing when a proactive 

action should be generated, we define a yield action. A yield 

action represents a moment when an interactant is yielding the 

floor, providing an opportunity for a proactive behavior to be 

executed (Duncan 1974, 1972). In our training data, the 

customer was sometimes occupied with playing with the 

camera or reading the spec sheet, or sometimes just decided not 

to do anything, and thus did not speak or move for some time, 

indicating that the customer may have relinquished his turn. As 

observed in 209 instances from our training examples, the 

shopkeeper often seized the opportunity to do something 

proactive, usually by introducing another feature or camera.  

In the training data, we define the customer to have yielded 

his turn whenever we observe two consecutive occurrences of 

shopkeeper actions, based on the findings presented by Duncan 

(Duncan 1972) and our observation that the shopkeeper 

proactively performed another action after his previous action. 

For example, after a shopkeeper speech action (e.g. answering 

a question), if the subsequent observed action is another 

shopkeeper speech action (e.g. talking about a camera feature), 

we can assume that a customer yield action has occurred 

between the two shopkeeper actions. Likewise, this strategy can 

be applied for the detection of a shopkeeper yield action. 

The next task is to identify yield actions in the real-time 

system. Turn-taking is a complicated problem, involving gaze, 

prosodic, linguistic, and gestural signals as well as timing, but 

for the current study we make the simplifying assumption that 

we can detect a yield action using a timing threshold. This 

assumption has been made in HRI (Thomaz and Chao 2011; 

Chao and Thomaz 2011) and other spoken dialogue systems as 

well (Raux and Eskenazi 2008).  To determine a time threshold 

for identifying yield actions, we computed the average amount 

of time elapsed between two consecutively observed 

shopkeeper actions in the training data. This value was 

calculated to be 3.52 seconds. Thus, in our system, we defined 

a customer yield action to occur if the customer did not begin 

speaking or moving within 3.52 seconds after the end of the 

previous robot action. 

4.4    Incorporating interaction history 

Although single-step prediction might be sufficient for 

answering questions, there are many situations where context is 

important.  For example, an answer to a customer’s question 

such as, “how much does this cost,” can be generated based on 

the most recent customer utterance and spatial location – 

information from interaction history is not necessary. However, 

after a customer yield action or a statement or backchannel 

utterance such as “Okay,” or “I see”, the customer’s action does 

not contain information which uniquely determines a robot 

response. In such cases, an appropriate proactive shopkeeper 

action will depend to some degree on the previous interaction 

context. Some examples of history-dependent behavior include 

the following:  

 After a customer yield action, the robot could continue to 

provide information about the last feature presented, or 

present a new feature not previously discussed. Both cases 

are dependent on the robot’s previous utterance.  

 There may be an inherent sequence to robot behaviors, e.g. 

first introducing and moving to a new camera, then offering 

for the customer to pick it up and try it, so the robot’s 

second action depends on its previous action.  

 When the customer answers a question, e.g. by saying 

“yes,” the robot’s next action depends on both the 

customer’s answer and the question that was asked. 

To address these cases, we propose the use of interaction 

history to enable the robot to determine an appropriate action 

for a given context. History can be represented in various ways, 

and including more information increases the dimensionality of 

the input vector and hence the difficulty of the learning 

problem. For the amount of training data available in our study, 

3 steps of history seemed to be sufficient to enable the robot to 

learn proactive behaviors such as those described above.  

Thus, we include the three most recent discrete actions as 

inputs to the classifier. Once an action is detected, a joint state 

vector, describing the state of both interactants at the time, is 

appended to the interaction history, which is kept at a fixed size 

of 3 steps. Fig. 4 shows an example of how customer and 

shopkeeper actions from the training data are segmented into 

sets of 3 action vectors (𝑎𝑐𝑡𝑖𝑜𝑛𝑡−3, 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−2, 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−1) to be 

used as inputs for training the behavior predictor. The 

subsequent shopkeeper action is represented as a robot action 

vector, and it is used as the training output for the predictor. In 

this way, interaction history segments are used to train the robot 

to predict an appropriate action. 

4.5    Learning to attend to history 

While including interaction history provides valuable context 

for predicting proactive behavior, it also increases complexity 

and noise, and thus considerably slows the rate of learning 

 
Fig. 4 Example of how actions are identified in the training data. A yield action 

is identified whenever two consecutive actions from the same participant 
without any action detected in between. 

 

time
C1 S1 C2 C3 S2 S3

C2

C3 S2

Robot Action

yield S3
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yieldC2

S1C1

S2C3

Action sequence from training data

Training inputs for action predictor

Inputs (Interaction History)
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(Cover and Hart 1967). The inclusion of irrelevant information 

may thus hinder the robot’s ability to learn correct behaviors. 

To help the system learn more effectively, we can exploit the 

fact that some behaviors are more dependent upon specific steps 

of history than others. For example, answering a customer’s 

direct question about a camera feature is primarily dependent 

only on the customer’s most recent utterance, that is, 

𝑎𝑐𝑡𝑖𝑜𝑛𝑡−1.  On the other hand, when a customer yields the turn 

and the robot generates a proactive behavior, the decision is 

more likely to be dependent upon the robot’s own previous 

action, 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−2 , and possibly also the customer’s previous 

action, 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−3.  In the case where the customer says “yes” 

when the robot asks for confirmation, the decision may depend 

most heavily on 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−2. If the predictor can be trained to 

focus only on the most relevant steps of history, it may be 

possible to improve the efficiency of learning. 

To achieve this, we applied a recently introduced architecture 

in the deep learning field, a feed-forward deep neural network 

with an attention mechanism proposed by Raffel and Ellis 

(Raffel and Ellis 2015). For each possible training label, the 

attention mechanism takes each input in the sequence and learns 

an adaptive weighted average based on each input.  This value 

can be thought as the “relevance” of the inputs, according to the 

context. Thus, this method has the capability to learn which part 

of interaction history is relevant for generating a robot action, 

and also the advantage of visualizing into the neural network to 

see which part of the history the network is attending to.  

Fig. 5(a) shows the schematic of the deep neural network, 

where the training input is the interaction history, consisting of 

an input sequence of the three most recent joint state vectors, 

𝑋 = {𝑗𝑠𝑣𝑡−3, 𝑗𝑠𝑣𝑡−2, 𝑗𝑠𝑣𝑡−1}. The activation value of neuron 𝑗 

in layer 𝑙 is defined in Eq. (1) 

 ℎ𝑗
(𝑙) = 𝜎(∑ 𝑤𝑗,𝑘

(𝑙)
∙𝑘 ℎ𝑘

(𝑙−1)
) + 𝑏𝑗

(𝑙)
) (1) 

where 𝑏𝑗
(𝑙), 𝑤𝑗,𝑘

(𝑙)
∈ ℝ  are free parameters, ℎ𝑘

(𝑙−1)
 is the 

activation (output) of neuron k in layer 𝑙 − 1 , and 𝜎  is a 

nonlinear activation function.  

The attention mechanism, 𝑎𝑗 , is computed using a single 

layer perceptron and then a softmax operation to normalize the 

values between zero and one, as expressed in Eq. (2).  

𝛾𝑗 = 𝑡𝑎𝑛ℎ(𝑊𝑎ℎ𝑗
(𝑙)

+ 𝑏𝑎) 

 𝑎𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛾𝑗)  

 𝑐 = ∑ 𝑎𝑗ℎ𝑗
(𝑙)𝑇

𝑡=1  (2) 

The idea is that once we have an activation value of neuron 𝑗 

in layer 𝑙, ℎ𝑗
(𝑙)

, we can query each value asking how relevant 

they are to the current computation of the target class 

assignment. ℎ𝑗
(𝑙)

 then gets a score of relevance which can be 

turned into a probability distribution that sums up to one via the 

softmax activation. We can then extract a context vector, 𝑐, that 

is a weighted summation of the activation value in layer 𝑙 
depending on how relevant they are to a target robot action (see 

Fig. 5(b)). Thus, the value of 𝑎𝑗,  describes how much of each 

step in the interaction history should be considered for each 

robot action. For example, if 𝑎𝑡−1 is a large number, this would 

mean that the DNN pays the most attention to the most recent 

step of the interaction history, and thus is important for 

predicting the robot action.   

Here we describe the hyperparameters of our neural network. 

The dimension of the input layer is three sets of input neurons 

of size 𝑚 (𝑚 = 1244) from the joint state vectors, followed by 

two leaky rectified hidden layers, an attention layer, and another 

leaky rectified hidden layer. The output layer is a softmax with 

the number of neurons equal to the number of possible robot 

actions (761), which represents the probability of a robot action 

given an interaction history input. The number of neurons for 

each hidden layer is 800. There was no pruning or dropout layer 

applied in our neural network architecture. The weights of 

𝑏𝑗
(𝑙), 𝑤𝑗,𝑘

(𝑙)
 is optimized by momentum-based mini-batch 

  
Fig. 5 (a) Schematic of the multilayer perception neural network: Interaction history is inputted to the neural network as joint state vectors and robot action as 

training target for the neural network. The output dimension of each layer is shown in parenthesis (b) Details of the attention layer: The context vector is a weighted 

summation of the activation value in layer l and represents how relevant parts of the input is to predicating the robot action.  
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stochastic gradient descent, with batch size of 128, learning rate 

of 0.005, and momentum coefficient of 0.9, and learning decay 

is 10−9. Initial weights for a neuron in layer 𝑙 are sampled from 

a normal distribution, where the biases start at 0.  

Fig. 6 depicts an example interaction during online operation 

of the system. When a speech or yield action is detected, the 

interaction history, consisting of three joint state vectors, is sent 

as a query to the trained DNN, which updates an attention value 

for each input. The neural network then predicts the probability 

for each robot action and outputs the robot action with the 

highest probability for execution. 

4.6    Examples of using the Attention Mechanism 

Here, we would like to illustrate some examples of our 

system with the attention mechanism. One feature of the 

attention mechanism is that the value of 𝑎(ℎ𝑡) provides us with 

a way to visualize which step of the input sequences the neural 

network is attending to. The higher the value of 𝑎(ℎ𝑡) for a 

certain step in the interaction history, the more it is considered 

for predicting a robot action.  

Fig. 7 shows these values for some example predictions, in 

which darker shades of blue represent higher attention values. 

For simplicity, only utterances are shown, although our system 

uses spatial data as well. These examples were generated by 

taking a sequence of three actions from the training data 

(customer – shopkeeper – customer) and feeding them into the 

trained DNN to predict an output shopkeeper utterance. 

Example 1 illustrates a case where the customer asks a 

question. The attention model selects the most recent customer 

utterance as the most important factor for predicting the robot’s 

answer. In Example 2, the attention model chooses the 

customer’s previous utterance as the most relevant when 

customer says a “backchannel”. We hypothesize that this is 

because the customer’s previous question helps to define the set 

of proactive behaviors which would be appropriate in this 

context. Lastly, in Example 3, the system detects a customer 

yield action, and the attention model chooses the shopkeeper’s 

previous utterance as the most relevant input. We observed that 

the robot was able to learn the appropriate behavior due to 

interaction history, which would not have been possible if the 

robot was only to predict based on the most recent customer 

action, that is, the customer yield action.  

These examples show some successful predictions, but we 

are not claiming that the attention mechanism will work for all 

situations. These examples were chosen because they illustrate 

that an attention model such as this could be a useful tool for 

visualizing a black-box system like a DNN.  

5    Offline Evaluation 

Before evaluating our system with a live robot, we performed 

an offline evaluation of the behavior predictor through cross-

validation with the training data, in order to confirm the 

effectiveness of the proposed inclusion of history and attention 

in the learning mechanism. 

5.1    Evaluation procedure 

A multi-fold cross-validation data set was generated by 

randomly selecting 10% of the data from the dataset, together 

with the following shopkeeper behavior which was to be 

predicted. The remainder of the training data, 2223 customer-

shopkeeper-customer behavior sequences, excluding the 

selected sequences, was used for training the predictors. The 

test data from the multiple runs are aggregated together, for a 

total of 500 behavior sequences as evaluation data.  

Five predictor variants were evaluated. All evaluations 

included the proposed detection of yield action, and the 

conditions differed by the type of classifier, the inclusion of 

history, and the use of the attention model. 

1. NB-1: A Naïve Bayesian classifier trained on the most 

recent single customer action. This was the classifier 

from the previous study, so we designated it as the 

baseline for comparison. 

2. NB-3: A Naïve Bayesian classifier trained with history 

(i.e. the most recent three steps of actions: customer–

shopkeeper–customer). 

3. DNN-1: A DNN trained on the single most recent 

customer action. 

4. DNN-3: A DNN trained with history (i.e. the most recent 

three steps of actions: customer–shopkeeper–customer). 

5. DNN-3-AM: A DNN trained with history, which also 

 
Fig. 6 An example of how actions are discretized and represented as joint state vectors in the interaction history during online operation of the system. A customer 
yield action is generated when no action has been detected for 3.52 seconds since the last robot action.  
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incorporated an attention mechanism, as described 

above. 

Normalized initiation, described by (Ioffe and Szegedy 

2015), was used to initialize the batch inputs of the DNN in (3) 

– (5). The networks were trained to minimize the cross entropy 

loss for 10000 epochs between the target output and the 

observed output for the entire training set. 

To perform this comparison, we evaluated the “social 

appropriateness” of the predicted behaviors, rather than simple 

prediction accuracy, because many equally acceptable utterance 

behaviors exist in the data set. For example, “$2000”, “it’s only 

$2000”, and “the camera body is only $2000”, are all valid 

answers to the question of the price of one of the cameras. This 

approach is similar to the procedure used in (Liu et al. 2016) for 

evaluating appropriateness of robot behaviors. 

A human coder, naïve to the experimental conditions, rated 

each prediction as “acceptable” or “unacceptable”. 

Unacceptable behaviors included factually incorrect responses, 

failures to answer a question, strange behaviors like moving to 

a new camera while a person was waiting for a response, and 

repetition of the previous behavior if not appropriate to do so. 

 As these ratings require subjective judgment, we confirmed 

the consistency of the coder’s evaluations by asking a second 

coder to independently rate the same data set. Their results were 

compared, and a Cohen’s Kappa value of 0.80 was calculated, 

indicating very good interrater reliability, so we consider the 

coder’s ratings to be reliable. 

5.2    Results 

To evaluate statistical significance of differences between the 

conditions, a chi-squared test was performed, comparing each 

of the classifiers against the NB-1 (baseline) classifier. The 

results of this comparison are shown in Table 2.   

For the NB-3 classifier, the chi-squared test showed 

significance (χ2(1, N=500) = 28.63, p < .001) indicating that 

simply adding history to the Naïve Bayes classifier resulted in 

significantly worse performance than simple single-step 

prediction.  For the DNN-1 classifier, a chi-squared test did not 

show statistical significance, (χ2(1, N=500) = 1.46, p = .227).  

The performance of the DNN-3 classifier again did not show a 

significant difference from the baseline in a chi-squared test, 

(χ2(1, N=500) = 2.75, p = .097). The proposed DNN-3-AM 

classifier provided the highest performance, and a chi-squared 

test showed a significant difference from the baseline, (χ2(1, 

N=500) = 4.45, p = .035).  

 This evaluation shows that simply adding history as inputs 

to the original NB-1 classifier resulted in significantly worse 

performance, whereas the proposed DNN-3-AM technique 

incorporating both history and the attention model, performed 

significantly better than the baseline predictor. 

Although overall performance was lower than we had hoped, 

we believe performance would improve significantly with 

better speech recognition and more training data. 

6    User Study 

To observe the effect of the new proposed features in live 

interaction, we conducted a user-study to compare the two 

conditions: (a) proposed, using customer yield actions and the 

DNN-3-AM classifier, and (b) baseline, a system using the NB-

1 classifier and not using customer yield actions. 

6.1    Hypothesis and Prediction 

In the evaluation experiment, we made the following 

hypotheses about the effects of our proposed techniques:  

1. Identifying customer yield actions will lead to the user to 

perceive the proposed system as more proactive, since the 

robot is able to identify when it should take an action.  

2. Using DNN-3-AM classifier will enable the robot to 

generate behaviors that are context-sensitive and therefore 

more contingent to the user’s action in the proposed 

system, thus the robot will behave in a more socially-

appropriate way. 

Table 2. Results of manually-coded cross-validation comparison. The 

result of DNN-3-AM showed a significant difference when compared with 

the baseline system. 

Classifier Behavior Correctness p value 

NB-1 (baseline) 56.2%  
NB-3 39.0% <.001 

DNN-1 60.2% N.S. 

DNN-3 61.8% N.S. 
DNN-3-AM 62.4% <.05 

 

 

Example 1: Answering questions at Nikon (reactive) 
 

 C: [yield action] 

 S: its only $68 and great camera for all the family anyone can use 

it 

 C: what color do you have for this camera? 

Predicted: “this one comes in purple pink black silver and red.” 
 

 

Example 2: Presenting unsolicited information (proactive) 
 

 C: And what about the color of this camera? 

 S: It comes in black, white, and silver. 

 C: I see. 

Predicted: “You can upload directly to Facebook  

through a wireless link.” 

 

Example 3: Introducng Nikon at Sony (proactive) 
 

 C: [yield action] 

 S: over here we have the Nikon. 

 C: [yield action] 

Predicted: “picks up and take a few pictures if you like it set up to be 

point and shoot.” (move to Nikon) 
 

 

Fig. 7 Examples of successful predictions using our attention mechanism 

technique with a history length of three.  Shaded boxes show the relative 

weight of 𝑎(ℎ𝑡) from DNN assigned to each action, indicating its importance 

in predicting the final prediction. Darker shading indicates higher weight.  
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3. Overall, this will lead users to perceive the interactions to 

be better in terms of quality using our proposed system, 

since proactive behavior and responding appropriately to 

the user’s actions are desirable in service interactions. 

6.2    Experiment Setup 

6.2.1   Participants 

A total of 15 paid participants (11 male and 4 female, average 

age 31.3, s.d. 2.37) played the role of customer in the 

experiments. All of them were fluent English speakers. 

6.2.2   Environment 

The experiment was conducted in the same camera shop 

setting used for the data collection, with three digital cameras 

displayed in an 8m x 11m experiment space. The same sensor 

network was used for tracking, and the participants 

communicated with the robot using an Android phone for 

speech recognition. 

6.2.3   Robot Platform 

For this experiment, we used Robovie 2, a humanoid robot 

with a 3-Degree-of-Freedom (DOF) head, two 4-DOF arms, 

and a wheeled base capable of moving at 0.7 m/s. For motion 

planning, the dynamic window approach (DWA) was 

implemented to avoid obstacles (Fox et al. 1997). The Ximera 

speech synthesis system (Kawai et al. 2004) was used to 

generate its speech. 

Idle motion behavior was implemented in the robot for both 

conditions, consisting of small arm and head movements while 

idling, speaking, and moving (Shi et al. 2010). Automatic gaze 

tracking was also implemented, and the robot followed the 

customer with its gaze during all interactions. 

6.2.4   Procedure 

We compared the robot’s performance between two 

conditions: proposed and baseline. For each condition, we 

asked participants to role-play for 4 trials. To create variation 

in the interactions, the participants were asked to role-play as: 

(1) a need-based customer (2 trials): who was looking for 

features as either someone familiar or unfamiliar with cameras, 

and (2) a quiet customer (2 trials): who was not looking for 

anything in particular and didn’t have much to say, and was 

encouraged to read the spec sheets or play with the cameras. In 

all trials, they were encouraged to walk around the shop and 

show an interest in learning about camera features. The order of 

the conditions was counterbalanced and the order of the trials 

within each condition was randomized.  

As in our data collection, participants were asked to pretend 

to be a first-time customer in the camera shop for every trial and 

the participants performed 2 sample interactions before the 

experiment to become familiar with the Android phone 

interface and confirm their understanding of the instructions.   

After the 4 trials in one condition were completed, the 

participant answered a questionnaire. The procedure was 

repeated with the remaining condition (baseline or proposed).  

6.3    Measurement 

Before the experiment, we explained to each participant that 

the goal of this project was to create a proactive robot 

shopkeeper which could assist customers in a camera shop, and 

they were asked to evaluate how well the robot was able to 

demonstrate that proactivity. After the experiment, we had each 

participant fill out a written questionnaire, rating the following 

items on a 1-7 scale (1 being very negative and 7 being very 

positive): 

• How proactive was the robot’s behavior? 

• How socially appropriate were the robot’s behaviors? 

• Overall evaluation 

After the questionnaire was completed, the participants were 

interviewed to gain a deeper understanding of their opinions of 

the robot’s behavior. 

6.4    Results 

6.4.1   Questionnaire Results 

Fig. 8 shows questionnaire results from the participants. To 

compare each rating between the proposed condition and the 

baseline condition, we conducted a repeated-measures 

ANOVA for each of the three questions.  

We verified that all of our predictions were supported, as this 

analysis found significant differences between the conditions 

for all ratings: “Proactivity” (F(1,14)=28.332, p<.001), “Social 

Appropriateness” (F(1,14)=5.250, p=.038), and “Overall 

evaluation” (F(1,14)=7.875, p=.014).  

1. The results support our hypothesis that the participants 

would perceive the robot to be more proactive using the 

proposed system than the baseline system.  

2. The results support our hypothesis that participants would 

perceive the robot to be more socially appropriate with our 

proposed system than the baseline system.  

3. The results supported our hypothesis that the proposed 

system would lead to a better overall interaction than with 

a baseline system.  

6.4.2   Qualitative Observations 

We observed a number of qualitative differences between the 

behaviors of the proposed robot and the baseline robot. 

Approach: The proposed robot would typically take the 

initiative to approach a customer standing at a camera. In 

contrast, the baseline robot typically waited at the service 

counter until the customer asked a question.  

Introducing features and other cameras: The proposed 

robot would proactively introduce camera features to the 

customer without being asked, e.g., saying: “pick it up see how 

light it is it is only 120 grams”, or proactively lead the customer 

to a new camera. In contrast, the baseline robot would answer 

questions, but not take any initiative to talk about camera 

features or introduce new cameras. Rather, it stood silently by 

the customer when the customer had nothing to say to the robot.   

Context-dependence: We observed cases where the 

proposed robot was able to generate behaviors dependent on 

context or interaction history. For example, in one case the 

proposed robot asked a customer who was looking to take travel 

pictures, “so you need a camera you can take anywhere use 

easily”. With the customer’s response of “yes yes I need that”, 

the robot then introduced the smallest, most lightweight 

camera. We believe this illustrates the value of incorporating 
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interaction history, as the customer’s utterance itself contained 

no information about which camera would be appropriate. 

The example transcript of the proposed robot interacting with 

a quiet customer shown in Table 3 illustrates how the robot was 

able to answer questions (reactive behavior) and proactively 

explain new features (proactive behavior). Additional examples 

of human-robot interactions can be seen in the accompanying 

video attachment.  

6.4.3   Interview results  

From our interview results, many participants thought both 

proposed and baseline robots were friendly. Many participants 

commented that they felt more engaged with the proposed robot 

because it proactively asked them questions (e.g. “what sort of 

pictures do you take?”) and talked about camera features while 

they were playing with the camera. One participant said that he 

liked when the proposed robot initiated conversation, since he 

was unsure what to say to a robot in a shop. Many participants 

also commented that the proposed robot seemed more 

approachable, attentive, and aware.  

It is interesting to note that some participants preferred the 

interaction style of the proposed robot more than the baseline 

robot. One participant said the baseline robot reminded her of a 

surveillance system, where the robot is watching to see if she 

has damaged any goods. Another participant felt annoyed by 

the baseline robot, as it followed him around the shop, but did 

not say anything to him when he was looking at the cameras.  

7    Discussion   

7.1    Contribution  

In this study, we demonstrated that the robot was able to 

generate both reactive and proactive behaviors from examples 

of human-human interaction. We showed that the robot was 

able to not only answer questions, but also proactively assist the 

customer by introducing new features or a new camera. The 

robot was also able to respond based on interaction context, 

even when what the customer just said contained very little 

information (e.g. “yes please”). Through an offline evaluation 

and a user-study evaluation, we demonstrated that the robot was 

perceived as more proactive, more socially-appropriate, and 

better overall with our proposed techniques, as compared to a 

baseline system that did not use our techniques. 

7.2    Identifying yield actions in turn-taking  

 In this study, we demonstrated that proactive behavior can 

be generated by identifying yield actions based on a timing 

threshold. While we demonstrated this approach to work well 

in our situation, we believe that this technique can be improved 

by including other ways of identifying yield actions. For 

example, nonverbal behaviors such as gaze and nodding have 

been investigated as turn-taking signals in both psychological 

(Duncan 1974; Gu and Badler 2006) and HRI studies (Rich et 

al. 2010; Mutlu et al. 2009). Thus, the detection of non-verbal 

feedback for a more natural turn-taking behavior in a robot 

could be interesting to explore in future work.  

7.3    History Representation 

In our scenario, we demonstrated that the robot was able to 

reproduce the behaviors of a proactive shopkeeper with a fixed 

length of three history steps with our proposed system. While 

the choice of three history steps was enough for our scenario, 

we expect that additional benefits could be gained by increasing 

the length of history or otherwise representing long-term 

history in some way. For example, sometimes the customer 

would state their goal at the beginning of an interaction, “I am 

looking for a camera that is easy to carry around”. Since only 

the immediate history was used for training and generating 

robot behavior, this information would be lost over time.   

Choosing a history representation is a difficult problem. If 

the interaction history is too long, the robot may learn some 

additional context-dependent behavior, but it becomes more 

difficult for the system to learn to ignore history for simple 

question-answer exchanges. One possible future improvement 

may be to explicitly model a customer’s intention or goals to 

capture this long-term history. Although such questions can be 

explored in future work, our current study has demonstrated 

that including just the immediate history reproduced reasonable 

proactive behaviors for the dataset we have.  

7.4    Generalizability and Scalability  

We believe that this data-driven approach can be applied in 

domains where repeatable interactions can be captured, and 

where proactive behaviors are context-dependent. For instance, 

the task of an art museum tour guide robot includes answering 

questions about a particular artwork (e.g. facts about the artist), 

as well as proactively explaining about other interesting 

anecdotes about that piece (e.g. the medium used or time period 

completed). We can also imagine a tourist center robot, where 

its tasks could include both answering questions about a tourist 

attraction (e.g. operating hours) and expatiating about other 

details (e.g. admission cost).   

There may be some domains to which our approach cannot 

be generalized. These domains might require proactive 

behaviors that are dependent on subtle social cues or 

background knowledge. One example might be an educational 

 
Fig. 8 Results of the robot behaviors in user study evaluation. The bar in the 

graph represents standard error.  
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robot that proactively teaches a language, where the lesson is 

tailored to the student’s comprehension level. We imagine such 

domain would be difficult to learn with our current approach, 

since such framework containing the knowledge about a user 

(i.e. level of comprehension) is not represented in our system.  

In terms of scalability with our proposed system, we believe 

that it will be able to scale up to more complex scenarios, for 

instance, when the number of cameras on display increases. The 

amount of training data required will be dependent on the 

number of social behaviors that need to be reproduced, the 

variability of the customer actions, and the reliability of sensing, 

thus training effort would scale linearly with the number of 

behaviors to be learned.  

7.5    Limitations  

While we have demonstrated a system for learning robot 

behaviors from a proactive shopkeeper, the offline evaluation 

shows there are some limitations to the current system.  Below 

we discuss some limitations and possible strategies for future 

improvement. 

Repeatability of actions: This technique is designed to work 

for social scenarios containing many repeatable actions, and the 

Table 3 An example of the proposed robot interacting with a quiet customer in the user study.  

 

 

(1)  [Customer and Robot at Canon] 

Customer: “can you tell me a little bit about this camera?” 
Robot: “you have full creative control it has every possible manual setting” 

(2)  Customer picks up the camera and plays with it 
Robot: “we have one set up over here with a small zoom lens if you would like to try using it” 

(3)  Customer: “ok thank you” [walks to Nikon] 
Robot: [moves to Nikon]  

Customer reads the spec sheet 

Robot: “would you like to take a couple pictures with at first”  

(4)  Customer: [plays with the camera] 

Robot: “here is the optical zoom so you can see the effect it has on your picture too”  
Customer: [continue playing with the camera] 

Robot: “the two most important things with this kind of cameras that the pictures are great quality because everybody's going to look at them and 

then I can respond very quickly because it's all about being out with friends and family” 
Customer: “yeah that’s true” 

Robot: “it comes in a range of colors it takes fantastic pictures it's really easy to use so you can focus on the photograph instead of all the ways 

that the camera can be set” 

(5)  Customer: “oh thanks” [walks to Sony] 

Robot: [moves to Sony] “good afternoon how can I help” 

Customer: [plays with the camera] 
Robot: “it's an excellent camera that takes the same quality pictures as a top-end camera without the top and price” 

(6)  Customer: “okay well thanks so much for the information” then leaves the shop  

Robot: returns to service counter while saying “no problem have a good afternoon” 
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most frequently-observed actions will be learned best. Actions 

that are very infrequent or unique in the training data will not 

be learned well. This is an inherent limitation of a learning-by-

imitation approach, and it could be valuable to develop methods 

for quantifying the degree of repeatability in a set of interactions. 

This could be useful for judging when sufficient training data 

has been collected to reproduce an interaction, or for deciding 

whether this approach is applicable to a new social scenario. 

Compound utterances: The shopkeeper often spoke about 

multiple features in one utterance (e.g. “This has a 9 preset 

modes and it also has a 3200 ISO” and “This has 9 presets and 

is $550”), which means that utterances that are not exactly 

semantically similar may end up being clustered together, and 

consequently mapped to the same robot action. For future work, 

we envision improving the clustering algorithm (e.g. using a 

soft clustering algorithm to expose more information about the 

probability distribution of an utterance belonging to a robot 

action) or techniques in natural language processing to better 

handle more complex utterances. 

Representing other modalities: Modalities such as gaze and 

gesture are often important in social interaction. For example, 

the human shopkeeper sometimes introduced a camera by 

pointing to it instead of actually moving to that camera. This 

pointing behavior is not recognized by our sensors and thus not 

learned by the robot. Consequently, this led to some confusing 

situations where the robot would talk about a camera other than 

the one it was standing at. It would be interesting to incorporate 

additional perceptual (Nickel and Stiefelhagen 2007) and 

generative (Sugiyama et al. 2007) modules for additional 

modalities, such as pointing or gaze.   

8    Conclusion 

In this work we have successfully demonstrated a system 

designed to reproduce not only reactive behaviors for a robot 

(e.g. answering questions), but also proactive behaviors (e.g. 

providing unsolicited information) that are learned from 

human-human interactions. This was accomplished through 

three proposed techniques, including detection of yield actions, 

incorporating interaction history, and using an attention 

mechanism to learn which history steps are important for 

predicting the robot behavior. First, we demonstrated that our 

proposed technique was rated the highest in terms of behavior 

correctness among five different methods for predicting robot 

behaviors. Then, we validated our approach in a comparison 

user-study, which showed that participants perceived the 

proposed techniques to produce behaviors that were more 

proactive, socially-appropriate, and better in overall quality. 

Social robots are now appearing in the real world, and we are 

seeing a growing market in the service industry for robots 

which interact with customers. In such situations, proactive 

behavior may prove necessary to enable robots to effectively 

engage with their customers and users. In this work we have 

successfully demonstrated one way in which a data-driven 

approach from our previous work can be extended to reproduce 

proactive behaviors from a human shopkeeper, and we believe 

that data-driven techniques like these will become a valuable 

tool for building real-world interaction logic for social robots. 

Appendix 

Here we describe our data abstraction techniques to enable 

the learning of high-level interaction logic in human-robot 

interaction to be achieved in an entirely data-driven way, that 

is, without any kind of manual annotation or cleanup of the 

sensor data. This follows the work presented in (Liu et al. 2016). 

Defining input features 

Here, we describe the features used in the joint state vector, 

including the abstraction of motion (consisting of current 

location, motion origin, and motion target of both participants, 

and a spatial formation), and an utterance vector of the current 

spoken utterance. The total dimensionality of the input features 

was 1244.  

Motion Abstraction: We use motion abstraction to 

characterize a set of stopping locations, motion trajectories, and 

spatial formations which can be used to describe the motion of 

the customer or shopkeeper as a combination of discrete state 

variables rather than raw position or velocity data. 

To begin the analysis, we segmented all trajectories in the 

training data into moving and stopped trajectories, based on a 

velocity thresholding technique presented in (Guéguen 2001). 

We spatially clustered these trajectory segments to identify a 

discrete set of typical stopping locations and motion 

trajectories for each role (customer and shopkeeper).  

For stopping locations, we used k-means clustering, 

identifying five stopping locations for the customer (i.e. the 

locations of the 3 cameras, the middle, and the door) and five 

for the shopkeeper (i.e. the locations of the 3 cameras, the 

middle, and the service counter). 

 For moving trajectories we used k-medoid clustering based 

on spatiotemporal matching using dynamic time warping.  

We created rules for identifying a predetermined set of 

common spatial formations based on the distance between the 

interactants and their locations. The rules for spatial formations 

are similar to three existing HRI proxemics models: (1) present 

object (Yamaoka et al. 2008): both interactants were at stopping 

locations corresponding to the same camera, (2) face-to-face 

(Hall 1966): both interactants are within 1.5m of each other but 

not at a camera, and (3) waiting (Kitade et al. 2013): if the 

shopkeeper was at the service counter and the customer was not.  

In addition, we also identified the current spatial target for a 

particular spatial formation. The formation target for “present 

object” can be either Sony, Nikon, or Canon, whereas the 

formation target for the spatial formation “face-to-face” and 

“waiting” is ‘none’.  

Utterance Vectorization: We performed utterance 

vectorization of the customer and shopkeeper using common 

text-processing techniques. Specifically, we removed stop 

words, applied a Porter stemmer, enumerated n-grams up to 3, 

and performed Latent Semantic Analysis (Landauer et al. 1998) 

to reduce the dimensionality to 1000. To emphasize important 
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keywords, we also used the AlchemyAPI cloud-based service2 

to automatically extract keywords from each utterance and 

represented the keywords separately in the vector (200 

dimensions). By using this procedure, we were able to take any 

input utterance and represent it using a 1200-dimensional 

vector. Vectorization of customer and shopkeeper utterances 

were performed independently. 

Defining Robot Actions 

In our system, each observed shopkeeper action must 

correspond to a discrete robot action. A robot action consists of 

an utterance (represented by an ID number) with a 

corresponding target formation. 

Shopkeeper Utterance: To reproduce shopkeeper speech 

with a robot, it is necessary to define a set of discrete utterance 

actions. Common utterances are frequently repeated in the 

training data (for example, variants of “How may I help you?” 

occur 188 times), but these instances often include slight 

differences due to speech recognition errors or individual 

variation. We used bottom-up hierarchical clustering based on 

lexical cosine similarity to group these similar utterances into 

761 clusters corresponding to discrete robot speech actions. 

From each shopkeeper utterance cluster, one utterance was 

selected for use in behavior generation. For each utterance, we 

compute the cosine similarity of its term frequency vector with 

every other utterance in the same cluster, and we sum these 

similarity values. The utterance with the highest similarity sum 

is chosen as the typical utterance to be used to generate robot 

speech. Notice the typical utterance can also be “none”, which 

means that the robot does not output an utterance.    

Target Formation:  We use the same abstraction rule 

described earlier to represent a target spatial formation for the 

robot (i.e. present product, face-to-face, waiting, or none). This 

allows the robot to precisely calculate its target position and 

facing direction defined by the specefic HRI model, in 

accordance with its estimation of the customer’s destination.  

If the predicted target formation is different from the robot’s 

current formation, the robot moves to attain the new target 

formation. Specifically, if the predicted formation is face-to-

face, the robot approaches the customer; if the predicted 

formation is waiting, it returns to the service counter; if the 

predicted formation is present-object, the robot approaches the 

target object; and if the predicted formation is none, the robot 

stays where it is.   
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