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Abstract— Learning-by-imitation approaches for developing
human-robot interaction logic are relatively new, lut they have
been gaining popularity in the research community n recent
years. Learning interaction logic from human-human
interaction data provides several benefits over efjgit
programming, including a reduced level of effort f@ interaction
design and the ability to capture unconscious, implit social
rules that are difficult to articulate or program. In previous
work, we have shown a technique capable of learningehavior
logic for a service robot in a shopping scenario,dsed on non-
annotated speech and motion data from human-humarxemple
interactions. That approach was effective in reprodcing
reactive behavior, such as question-answer interaons. In our
current work (still in progress), we are focusing o reproducing
mixed-initiative interactions which include proactive behavior
on the part of the robot. We have collected a muchmore
challenging data set featuring high variability ofbehavior and
proactive behavior in response to backchannel uttances. We
are currently investigating techniques for reprodudng this
mixed-initiative behavior and for adapting the roba’s behavior
to customers with different needs.

I. INTRODUCTION

As robotic technologies improve, the possibilitysefvice
robots in the real world becomes closer to real8grvice
robots will need to interact directly with humaretss raising
a number of difficult challenges. One such chaleigythe
problem of how to create the overall applicatiogidofor
interactive robots, including interactive dialogddnteractive
motion planning.

Although high-level interaction logic might traditially be
programmed manually by an interaction designemprepose
a data-driven technique,
techniques could be used to learn application ltigiough
imitation of human behavior. We propose that fouations

where large amounts of example human-human interact

data is available, such data-driven approachesiqmolduce
more reliable interaction logic and require lestrefthan
manual programming.

In this paper, we will first summarize our previougrk on
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Fig. 1. Overview of the proposed learg technique. Left: Collecting d¢
from example humahuman interactions. Right: Reproducing hu

behavior in a service robot.

this topic, in which we demonstrated a technique fo
reproducing interactive behaviors which were pritgarser-
initiated [1, 2]. We will then present the curretate of our
work in progress, which examines the challenge bfed
initiative interaction. We will describe the datet sve have
collected for this new project and discuss a pdssblution
for an extension of our technique to mixed-initiati
interaction.

Il. RELATED WORK

A. Learning from Data

In many areas of robotics, machine learning appresc
such as learning-by-demonstratiare often utilized to learn
from a dataset of examples in order to reproduce
demonstrated task, as it is easier for humans,dirad non-
robotic-experts, to input poses, e.g., by moving aam
manually, than to explicitly specify them numerigaSome
examples include trajectory following [3, 4] orpoimotion

in which machine learningeplication [5]. Often these approaches are used lwiv-

level inputs such as sensory-motor patterns, rathen
cognitive and decision-making skills.

In social robotics as well, machine learning hasnbesed
to teach low-level behaviors, for example to miméstures
and movements [6] and to learn how to direct gazesponse
to gestural cues [7]. In one example, pointing @ate
behaviors were recognized in an imitative game gisn
hidden Markov model [8].

Data-driven dialogue systems have been demonstiated
robots which infer meanings from spoken utteranBgbski
et al. developed an algorithm which allowed a human to
interact with a robot with a subset of spoken Esfglanguage
in order to train the robot on a new task [9]. Meetral. used
a data-driven chunking parser for automatic inttigtion of
spoken route directions for robot navigation [10].

The focus of our work differs from these other wsirkthat



we are trying to reproduce overall high-level iatdion logic,
rather than specific elements of interaction, basettaining Se"“'j“{*’ﬁ\m"g SER

examples observed from real human-human intergatih 1 = =
natural spoken dialogue. i - - -

B. Using the crowd for learning Camerd et . Camera
. . .. . Display “ Displak *
With the advancement of high-precision trackingtesys E | 1 »
able to monitor real social environments [11, 1],is B e 8 ]
becoming possible to collect large amounts of tkdai ‘ o -
interaction data with little effort. This suggetits possibility ! )
of using a “crowdsourcing” approach, like the dmited o Desk

techniques used over the web to solve complex pnod) e.g.
users on Amazon’s Mechanical Turk helping to an@otarigure 2. Envionment setup for our study, featuring three candésplays
images for grasp planning [13]. Sensors on the ceiling were used for tracking humasifon, anc
The use of real human interaction data collectednfr smartphones carried by the participants were usedgture speech.
sensors for learning interactive behaviors has be@oints of that technique here.
investigated in numerous works. The robot JAMES wasA Obiecive
developed to serve drinks in a bar setting, in Wwiicaumber ' d o ]
of supervised (i.e. dialog management) and unsigetv In the near future, we expect that it will be fétsito place
learning techniques (i.e. clustering of socialestahave been S€NsOrs in real social environments which can pelysi
applied to learn social interaction [14]. In costrawe observe human §OC|aI behaviors, such as motiorspeech.
propose a completely unsupervised approach for bott!ch technologies would allow enormous amounts of

abstraction and clustering of social states as agefbr robot [ntéraction data to be collected in real interaetiv
behavior generation environments, such as retail shops, care centehspks, or

In Young et al.’s work [15] [16], a person provides home;. By using such data, we bglievg it shoglddcgsible
example of an interactive locomotion style, whistused to (O train robots to perform the socially-interactidaties of
teach the robot to generate interactive locomdbigkaviors Service providers in those environments.

in real time according to that style. We also psmpto use 1€ goal of our previous study was to provide api-
real human interaction to train the robot, but fmaus is not CONCept demonstration that it is possible to leagh-level
only the robot’s motion, but its speech as well. interaction logic from passive observation of hurhahavior,

Connectivity to the web has also changed the we{Q an entirely data-driyen way. That is, the t_eqlnuei should
interaction data can be collected. The Robot Mamage NOt depend on any kind of manual annotation ornzipaof
System framework was developed to make learning € sensor data. We see this as an importantresnent in
manipulation and navigation tasks easier by cahgct order.to utilize “big data” such as the interactidata
demonstrations from remote users through a browsea described above. o
game [17]. The Restaurant Game used annotated™Or this study, we chose a camera shop scenanehich
crowdsourced data to generate abstracted représentd WO Participants, one representing a shopkeeper arel
data to automate game characters [18]. The Margggsc "ePresenting a customer, role-played interactions ai
online game used crowdsourcing to learn robot hiergf19- Simulated shop environment, in which the shopkeeper
21]. The idea was to use a data-driven approactevelop prov@ed recommendations and answered the custemer’
human robot interaction (HRI) behaviors from playef an guestions about features of three cameras (Carumy, &nd
online collaborative game to provide large amouafs Pan_asonlc). Theselllnteracnons involved both disdmd
training data and reproduce behaviors in a rearmuous ™Motion, as the participants needed to walk betwen
robot. camera displays in the shop. The objective wagaml the

Our work complements these approaches by consiglarin Shopkeeper's speech and motion behavior logic abttre
crowd-based data collection from sensors in a physi shopkeeper could be replaced with a humanoid robot.
environment, where some new challenges includeviego
recognition ambiguities due to sensor noise andiraBt B. Data collection technique

variation of human behavior. To capture the participants’ motion and speech,daéa

used a human position tracking system to recorclp&n
positions in the room (Fig. 2), and we used a baadheld
smartphones for speech recognition.

In our previous study, we sought to reproduce d$pe&d  The position tracking system used data from 16 d4ioft
locomotion behaviors of participants role-playing &inect 1 sensors arranged in rows on the ceiliratiéle
shopkeeper in a camera shop scenario [1]. Singstidy is  filters were used to estimate the position and barintation
an extension of that work, we will summarize thearant of each person in the room based on point cloual [d41].

I1l. MATERIALS AND METHODS
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Using this data capture system, we collected 17 &1 @, oo
interactions, including 1194 customer utteranced &233 =1 : ‘ ‘ ‘ ‘ .
shopkeeper utterances. 0 2000 4000 6000 8000 10000 12000

C. Learning techniques Figure 3. Customer stopping locations for the mresistudy, identifie
The details of data processing, abstraction, vixetion, through unsupervised clustering.

and learning are fairly complex, so we will onlynsmarize hierarchical clustering [22]. A total of 233 uttece
them here. For a full explanation, please se¢oomnal paper clusters were generated.
on this work [2]. 2) Action Discretization and Learning

Our basic approach was to abstract the behaviotheof = We developed a simple set of rules for discretizing
shopkeeper into a finite set of discrete speechrantion customer and shopkeeper actions in the training. date
“actions,” each of which could be reproduced wittolot. A defined an “action” to have occurred whenever adigpant
classifier was then trained such that vectorizedpoke an utterance and/or changed their movinge stat
representations of customer actions could be usguedict (stopped to moving, or vice versa). When two sleapler
when any one of these discrete robot actions shbeld actions were detected consecutively, they were etengto
executed. one action according to a set of rules. In this wawery

1) Abstractions interaction could be modeled as a sequence of m&sto

The first main challenge of this approach was how tactions followed by shopkeeper actions. This ersmahke to
reduce the dimensionality of the human behaviorsaed by train a classifier to predict an appropriate shejplez action
the sensors into a usable and meaningful featwwrnaNe whenever a customer action is detected.
used several abstraction techniques to achieve this

«  We spatially clustered people’s moving and stopped 3) Learning

trajectories, to identify a discrete set of typical The robot's interaction logic was learned by tragnia
stopping locations(Fig. 3) andmotion trajectories  cClassifier to predict a discrete robot action givam input
for each role (customer and shopkeeper). This wagpnsisting of a vectorized representation of thetamer
movement could be modeled as simple sequencesasfiion. Specifically we used a Naive Bayesiansiias, and
moving and stopping, rather than using rawy)( the input vector was defined to contain the follogvi
position data. For stopping positions, we used kimse information:

clustering, and for moving trajectories we used k- + Text vectorization of the customer speech

medoid clustering based on spatiotemporal matching ¢ Spatial state of the customer (location, motion

using dynamic time warping. origin, and motion target)

* We identified commorspatial formations, such as » Spatial state of the shopkeeper/robot (location,
“face-to-face” and “present object”, which corresgdo motion origin, and motion target)
to existing HRI proxemics models. By modeling the « Spatial formation of the customer and
spatial interaction as a series of transitions betw shopkeeper/robot (face-to-face, present product,
different proxemics formations, the details of dxac waiting, or other)

relative positioning can be computed by the model, The final input vector was 393 dimensions (346 fraxt
reducing the amount of data needed for learning.  and keywords, and 47 from spatial information), #ngas

* We performedspeech vectorizationof the customer used to predict one of 467 possible robot actions
and shopkeeper using common text-processiri@ombinations of utterance clusters and targettioes).
techniques such as removal of stop words, stemming,Robot actions were defined as follows:
enumeration of n-grams, and Latent Semantic « If the shopkeeper spoke an utterance in the trginin

Analysis, as well as using a pre-trained model from data, the correspondingpeech cluster ID was
AlchemyAPI cloud-based serviégo automatically included in the robot action.
extract keywords. + A target location for the action is identified. If the

» To identify discrete robot speech actions we shopkeeper is stopped when the action is detected,

clustered the shopkeeper utterances using dynamic

! http://www.alchemyapi.com




TABLE |. EXAMPLE TRAINING INTERACTION FROM PREVIOUS STUDY TABLE Il. EXAMPLE HUMAN -ROBOT INTERACTION FFOM PREVIOUS STUDY

C: Customer, S: Shopkeeper C: Customer, R: Robot
C: (Enters shop) C: (Enters shop)
S: (Approaches customer) Hi are you looking for anything in R: Hi, is there anything | can help you with today?
particular today? C: (movesto Panasonic) Yes, this camera, how's the battery life?
C: Yes | would like to... I am looking for a camer&wgood storage R: (moves to Panasonic) Long battery life of 9 hours.
memory. C: Ah, | see. And the weight?
S: (Guidesto Canon) Ok the Canon Rebel XTi can hold 10000 photps. R: This camera is 150 grams and it can fit in ymorket.
C: Ok, that is very good. What about the price? C: Oh, that's very convenient. Thank y@egins walking away)
S: This camera is $400. R: Ok. (moves back to service counter)
C: | see. Is it heavy? C: (movesto Canon) How about this one? How is the storage memqgry?
S: Yes, very heavy. R: (while moving to Canon) Yes, it can store 10000 photos.
C: How much? C: How much is it?
S: Like, a kilogram. R: This is $400.
C: | see, that is very heavy. Well | will think aliat. Thank you. C: Ok. What colors does it come in?
(Leaves shop) R: Intense grey, red, and brown colors.
S: Sure, no problem. C: Actually...(moves back to Panasonic)
R: (moves to Panasonic)
C: What's the optimal zoom for this camera?
R: 5x optical zoom.
C: Oh, ok. Thank youbegins walking to door)
R: No problem(returns to service counter)
then that stopping location is used. If the sheplez
is moving, then the motion target location is used.
* “None” was also included as a possible robot actiot

of the robot’s behaviors, but that study had saméadtions.
The interactions in that study were mostly questioawer
exchanges, and they included no representatiamteraction
the robot speaks the “typical utterance” for taster, history. Table | shows an example interaction ftbat study.

chosen by finding the utterance that has the htghelgotice that the shopkeepgr is always reactingeatistomer.
average similarity score to other utterances irt th ven the shopkeeper's first utterance can be mddesea

cluster reactive behavior responding to the customer ergetihe

« If the predicted target location is different frcime shop.  Table Il shows an example of a human-robot

robot’s current location, the robot moves to thm/ne'rmir"’lctlon genertated lt'smg that tgchmqt:e. ich tiee of
target location. n our current work, we are aiming to enric 5]

learned behaviors to include situations where timt can
D. Performance/evaluation summary frompreviouswork  generate behaviors proactively, rather than alwesisonding
A comparison study was conducted to evaluate theti® t0 questions. To achieve this goal, we neededtaluct a
performance using our proposed system, compardd avit New data collection.
baseline system which did not use techniques such a
clustering of utterances or abstraction of intécacstates, IV. PROACTIVE INTERACTION DATA
which we consider to be the concepts at the corewf  To capture naturally proactive behavior, we coneldca
proposed technique. For the details of this stptiase see new data collection, with a single participant jitaythe role
[2]. of shopkeeper. Through interviews and trial intéoas, we
The results of this evaluation showed that the gsed chose a participant with a naturally outgoing peaity and
system significantly outperformed the baselineeaysin a g great interest in cameras and photography. Ojectve
variety of metrics, including social appropriatesies was to try and reproduce the proactive nature af hi
consistency of speech and motion, correctness ofling®  personality.
and an overall evaluation. i
Another interesting result showed that the propaystem A. Data Collection
produced socially-acceptable behaviors 84.8% oftitine, The data collection was conducted with the samepsas
whereas automatic speech recognition (ASR) accunasy the first data collection, using the same room ignmation,
only 76.8%. That is, our proposed system was shioame Position tracking system, and smartphone-based chpee
robust to errors in speech recognition. recognition application. Three new camera modelsewe

We were quite pleased with the accuracy and liégldss chosen for the scenario.

During online operation, the predicted robot activas
executed in the robot as follows:
« Ifthe predicted action contains an utterance elug,



Customer participants were instructed to browsenash
or as little as they liked, and they could ask tjoes about
cameras or simply listen to the
recommendations. To create variation in the intevas,
customer participants were asked to role-play eithevice”
or “advanced” customers and ask questions that dvbal
appropriate for their role. Some camera feature® wkosen
to be more interesting for novice users (color,ghti etc.)

and others were more advanced (High-ISO performanc

details of the autofocus system, etc.), althougly there not
explicitly labeled as such.

Customer participants were not given a specifigdar
feature or goal for the interaction, as we were thpos
interested in capturing the shopkeeper’'s proacBedes
behavior. All participants were instructed to foctieir
discussion on the features listed on the camera Sipeet, to
minimize the amount of “off-topic” discussion.

We recruited a total of 9 customer participantsn@e, 1
female, average age 34.1), who conducted 12 intensc
each (6 as advanced and 6 as novice). The final skt
included a total of 2568 shopkeeper utterances 2289
customer utterances.

B. Data Properties

shopkeeper’
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Figure 4. Customer stopping locations from the data collection. Note th
there are only five clusters, as opposed to th&air the previous study.
differences in both speech and motion data foméhe data
set. We are currently exploring ways to extendsystem to
reproduce proactive behaviors like these.

V. PROPOSEDIECHNIQUES

One important consideration in generating proactive
behavior is that some level of history represeotatvill be
necessary. For example, if a customer is silersags “ok”,
then the shopkeeper’s next utterance will dependotoe

This interaction data differed from tha’t of the \po&IS  gegree on the shopkeeper's previous utterance. rOthe
study in a few ways. First, the shopkeeper’s attees tended | jtterances may depend on deeper history, for exarifghe

to be much longer and more complex, sometimesniglki spopkeeper needs to present a new feature of agaviteout

about 2 or 3 topics in one sentence. Second,htbpkeeper
often proactively spoke if some silence had elagdtat his
last utterance. Third, the customers demonstratede

repeating features which have been presented before
However, it is not clear how history of utteransbsuld be
represented. For example, it would be possiblettoe a

“baclﬁchannenl” utterances. For example, a customightm pgolean value for each robot action which has lsetuted
say, “oh, ok,” after listening to an explanationt mot ask a previously, but this would not preserve informatiabout

follow-up question. In such situations, the shomlezen this sequence. Another option would be to store asetjuence

study often performed proactive behaviors, such &g the |astn feature vectors, but this could increase the

volunteering more information about the current eeamor
continued his previous explanation.

dimensionality to the point where learning usefahaviors
would require an unreasonably large amount of data.

We performed a preliminary analysis of the customer

utterances to identify whether an utterance reduiee
response (such as a question or a request) ootigquire a
response (such as a backchannel utterance). Wel fibiai
527 (22.8%) of the customer’s 2299 utterances didseek a
response from the shopkeeper. In these situatiomsyould
expect that the shopkeeper could choose to perfame
proactive behavior.

Table Il illustrates an example interaction frohe tnew
data collection. Notice that after the shopkeepgtains the
price, the customer agrees with him (“Oh, very ghgabut

A. Learning adaptive robot behaviors

There are many techniques which have been devefoped
learning adaptive robot behaviors, such as goaletkd and
habitual robot behaviors through a Bayesian dynamic
working memory system [23], or incorporating histan
learning for mobile robots [24, 25], we believestiproblem
is a bit closer to the field of language or dialegrning. In
particular, many technigues involving deep neuetivorks
have been developed recently for handling languetzed
tasks, which are inherently sequential and recgorae level

does not ask a further question. The shopkeepen thef history or memory.

volunteers more information regarding the pricextNafter

Recurrent neural networks are often used for tdiklkes

several seconds of silence, the shopkeeper prefctivianguage processing, and Long Short-Term Memoryf {5

presents more information about a different feature

Figure 4 also shows an interesting difference fritra
previous study, in that the stopping locations dbinclude
“service counter”. This is because the proactivepkkeper
walked out to meet customers rather than waitimgtfem to
approach him.

recurrent neural network techniques are often fisethsks
such as word-by-word machine reading, where theninga
of a sentence can only be understood when integbiatthe
context of previously encountered words [26].

Some techniques have been developed for generating
automated dialog and answering questions, sudiedddural

These examples show that we can see qualitati®Responding Machine [27]. LSTM networks have alserbe



Example 1: Typical exchange (non-question, but reactive)

C: Excuse me.

S: How can | help?

.C: I am looking for a camera.

Predicted: “Can | ask what sort of pictures you take?”

Example 2: Answering questions (reactive)
C: ...and the ISO?

S: Up to 3200 it's pretty goad low light up to late evening. It|
take those pictures without much noise.

C: And what about the color of this camera?
Figure 5. Attention model architecture.

used in conjunction with convolutional neural netkgofor Predicted: “It comes in black, white, and silver.”
guestion-answering tasks[28]. A related technigubé End-
to-End memory network, which has been used forstéikke Example 3:Presenting unsolicited information (proactive)

language modeling and question answering [29]. Thi .C:Andwhataboutthecolorofthiscamera?

technique learns which part of an input sequeniapsrtant
for predicting the answer to a question. S: It comes in black, white, and silver.

B. Attention Moddl

C: | see.
One deep-learning technique which we think seemr
promising for history representation is a structoadled an Predicted: “You can upload directly to Facebook
“attention model”. Studies based on attention mpisimas through a wireless link.”

exist, such as modeling attentional modulation Wiigkible

; indi ior-baseldoti Figure 6. Examples of successful predictions using attention netwol
scheduling for periodic tasks of a behavior-ba e technique for aistory length of 3. Shaded boxes show the relatiggh

Sys'[em.[30: 31]. Inthis work, we are Cons?de.m‘gittemion assigned to each utterance, indicating its impegadn predicting the fin
model like that proposed by Raffel and Ellis in][32 prediction. Darker shading indicates higher weight.

The basic concept behind this attention modelustilated
in Fig. 5. In this network, the output vectorsmiltilayer
perceptronshi.n .. hy) representing the information from the VI. PRELIMINARY RESULTS
last n time steps (actions in the dataset) are multipbgd  Although this work is still in an early stage, wavie
weighting factorsd:.» .. or). The weighting factors themselvesimplemented a version of this attention model. Rdpcing
are learned from the vectotts.{ .. hy) via a second multilayer proactive robot behaviors that are robust to ne&ysor data
perceptron. The weighted vectors are then combinedmains part of the challenge for this work. Heeewill show
additively to produce an output vectpmwhich is finally used some early results showing some examples of the
to predict the robot action. The interesting pafttlhis effectiveness (and ineffectiveness) of this techeiq
architecture is that the weighting factarsare determined
dynamically, and thus, depending on the conteg slystem ) o
could automatically determine whether it shouldsider the 10 generate the embeddings.(.. hy) in Fig. 5, we used
most recent action or other actions from the intiéwa history ~2utoencoders trained on a vectorization of thetitgpd. Text
in predicting the next robot action. Was.flrst processed according to the procedure u;ebtie

For example, in a question-answer situation, we ldvouPrévious study (removal of stopwords, enumeratiém-0
expect that the most recent customer action (teathe 9rams, keyword identification, and latent semaatialysis),
question), represented by would be the most important resulting in a 300-dimensional vector. Likewise, ex¢racted
contributing factor to the decision processpsshould have the keywords for each utterances, and processéeyinerds
the highest weight. In a situation where the austosaid “ N the same way, resulting in an additional 50 digiens.
see,” perhaps the shopkeeper's last utterahag ¢r other 1 hiS vector was then input to a 4-layer autoencodé
utterances in the history would have stronger weigcause 800 hidden units in each layer, then was trainetl wtanh

knowledge of these history elements would be mefgfal activation for each layer, with an output dimensidy of
in predicting an appropriate proactive behavior aoid 200. Customer and shopkeeper utterances were eetbedd

repetition or choose a new utterance relevantegtevious into fjiﬁer?”t spaces, and we used a "leaky rectifiL.ReLU)
discussion. nonlinearity to computeé, :

A. Learning System Implementation



ht = LReLU(thxt + bxh)
The weighting factors were then computed using:
a(h,) = tanh(Wy h;, + by,)

We then added another hidden layer using leakyjifiegct
nonlinearity to compute the output:

y = LReLU(W,yc + b.y)

The outputy is trained against the target value with a cro

entropy objective for 10000 epochs. Details of teaky
rectifier technique can be found in [33].

B. Prediction Examples

Figure 6 shows some examples of predictions madriby
system. For simplicity of presentation, only uttexes are
shown, but our intention is to incorporate spatath as well.
These examples were generated by taking a seqoétivee
utterances from the training data (customer — shepér —
customer) and feeding them into the classifier iedjgt an
output shopkeeper utterance.

system and search for solutions which are robust an

generalizable to other scenarios and datasets.r&epting
this work at this workshop, we hope to start soiseussion
about possible approaches that might be usefultticr
difficult task.

VILI.

A. Discussion

DiscussIiON ANDCONCLUSIONS

The theme of this workshop is “behavior adaptation,

interaction and learning for assistive roboticsid although
our chosen retail scenario may differ somewhat friw@
%rget applications of assistance for the eldemly disabled,
we believe that the principles behind this work aighly
relevant.

Regarding adaptation to users, we are endeavaricrgate
a data-driven technique for learning the subtletids
interaction logic when dealing with a variety okus. In our
camera shop scenario, the “novice” and “advancesgrsi
require different kinds of explanation and assistamnd we
expect that our system should implicitly learn tovide
service consistent with these different sets of nseds.

Though our current method requires interactionseae-

Example 1shows a typical exchange which occurs at thgollected when domain knowledge changes (i.e. epdat

beginning of many interactions — when a customé&s &ar
help in selecting a camera, the shopkeeper usasily what
kind of pictures he/she takes. In this example,atiention
model has selected the most recent customer uti(dnam
looking for a camera”) as the most important indigng the
shopkeeper’s response.

camera price). It would be interesting to invedtgsolutions
to this problem in future work, such as using aaeiven
way to update the system with new knowledge,
automatically extract and update a feature spetifin such
as the camera’s price.

We believe that a technique like the one we progoséd

Example 2shows a typical exchange in which a customéere helpful in learning interaction logic for assistrobots,

asks several questions about features of a cariretfais case, Pecause the learning could be done directly froregiaers
the predictor correctly predicted the answer, baeemed to and domain experts, simply by observing them inpttoeess
consider both the customer’s current and previdiesances ©Of providing services as they usually do. Eventyafilarge
as being equally important. We have seen many eleampamounts of speech, motion, and other types ofaotEm data
where this happens, and we currently have no go((;@uld be captured passively in care facilities osgitals, it

explanation of why this occurs.

might be possible to use a “big data” approachreéate very

the shopkeeper must generate proactive behaviahviginot
answering a question. In this case, the attentimuel

chooses the customerprevious utterance as the most

relevant. We hypothesize that this is because istomer’'s
previous question helps to define the set of preact
behaviors which would be appropriate in this cotitéx this
case, the system chooses to present a differemiréeaf the
same camera. Since this is a feature of the samera and
since the robot is not repeating itself (presenting same
feature twice), we consider this to be a sociafiprapriate
behavior.

These examples show some successful predictiohsyebu
are not claiming that this is a workable solutiat. \in fact,
the predictor fails fairly often using our currempproach.
These examples were chosen because they illudinate
possibility that an attention model such as thislddeasibly
be a useful tool for incorporating history in theaidning of
interaction logic. However, we are continuing svelop the

conversational robots to learn “active listenindills to
encourage dementia patients to communicate.

B. Conclusion

To put this work into perspective, we understanat th
does not seem practical to entirely replace theeabh human
interaction designer with a machine learning tegbei
Realistically speaking, it will always be necesstoryhave
some visibility into a robot’s reasoning and to ééve ability
to debug and improve the robot’s behavior.

In an eventual real-world system, we expect thiaylid
approach would be best, combining the strengthdabé-
driven learning and manual design. The learningpmoment
could contribute by collecting the base set of baira and
conditions, discovering fringe cases which might he
anticipated by a designer, and uncovering ruleegwd by
implicit knowledge of which a designer might not d&®are.
The manual design component could then be usefdirfe-
tuning behaviors, correcting errors from noisy ¢daad

or



extending or updating the robot’s behavior set.

To conclude, the problem of learning mixed-initiati
interaction logic from data is a difficult one. Age have
described in this paper, we believe that the atennodel
technique shows promise as a flexible way to incate
interaction history into a data-driven technique larning
interaction logic by imitation. By presenting thierk at this
workshop, we also hope to gather insights and sigys
from other participants and build upon the knowkedd the
human-robot interaction community to develop relesalnd
generalizable techniques for learning top-levekriattion
logic for service robots.
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