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ABSTRACT 

 

Pointing behaviors are essential in enabling social robots to communicate about a particular object, person, or space.  

Yet, pointing to a person can be considered rude in many cultures, and as robots collaborate with humans in 

increasingly diverse environments, they will need to effectively refer to people in a socially-appropriate way. We 

confirmed in an empirical study that although people would point precisely to an object to indicate where it is, they 

were reluctant to do so when pointing to another person. We propose a model for selecting utterances and pointing 

behaviors towards people in terms of a balance between understandability and social appropriateness. Calibrating 

our proposed model based on empirical human behavior, we developed a system able to autonomously select among 

six deictic behaviors and execute them on a humanoid robot. We evaluated the system in an experiment in a shopping 

mall, and the results show that the robot’s deictic behavior was perceived by both the listener and the referent as 

more polite, more natural, and better overall when using our model, as compared with a model considering 

understandability alone. 

INTRODUCTION1 

The importance of natural and humanlike human-robot interaction is gaining more attention as robots gain 

presence in museums [2-4], classrooms [5], and elderly care facilities [6, 7]. In order to facilitate natural and 

intuitive communication, humanlike spoken, locomotive [8], and gestural behaviors are being developed for 

robots, and one important area of focus is in deictic gestures, such as pointing. Several studies in human-robot 

interaction have focused on generating human-like multimodal referring acts using both speech and gesture for 

objects [9-13] and space [14, 15]. 

                                                           
1 This paper is an extended version of our conference paper [1] with integrated technical details, additional 

discussions, expanded explanations, and supplementary analysis of the experiment. 
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Our study focuses on a method for generating behaviors for a robot to point to a person. There are important 

differences in the way someone gestures towards objects and the way someone gestures towards a fellow person. 

When pointing to people, it is often considered more appropriate to gesture casually to them rather than using a 

very obvious pointing gesture, i.e. with an extended index finger. However, in most situations there would be no 

reason not to use a clear and precise pointing gesture when identifying an object.  

As social human-robot interactions become more complex, it will be important to consider the social 

appropriateness of a pointing gesture within the context of the conversation. For example, if an elder-care 

provider is consulting with another practitioner about the health condition of a particular senior person, he would 

probably discreetly point out that person, using a subtle pointing gesture, in order to reduce the risk of the referent 

becoming aware and avoid causing anxiety to the referent. In such a scenario, if a robot directly singled out the 

individual when discussing a sensitive topic (i.e. a “closed” conversation), the robot would probably be perceived 

as socially-inappropriate. It would be more appropriate for the robot to discreetly identify the referent, even if it 

meant being less clear to its listener about the referent’s identity. However, if the conversation was not of a 

sensitive nature, and the topic being discussed is neutral or positive (i.e. an “open” conversation), the social 

consequences would be less severe, and it might be acceptable for the robot to be more obvious about identifying 

the referent. 

Existing models for generating deictic behaviors in robots are typically designed for referring to objects, and 

thus do not consider this element of social appropriateness. In this study, we present a model for generating 

socially-appropriate deictic behaviors for pointing to people.  

First, we present an empirical study of human pointing behavior, in which we confirm that people usually do 

not use precise pointing gestures, that is, they typically do not use the index finger to directly point towards 

another person, and that this phenomenon becomes even more pronounced in the case of private, or “closed,” 

conversation. 

We then propose a generative model for deictic behaviors, based on the idea of a balance between 

understandability and social appropriateness: more precise pointing gestures can increase understandability, but 
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they can also be socially inappropriate. Based on this concept and the data from our human behavior observations, 

we have developed a model enabling a robot to reproduce human deictic behavior towards people.  

Finally, we describe our implementation of this model in a real robot system and present results from an 

experiment conducted with a robot in a shopping mall, showing that people evaluated the robot’s behaviors as 

more natural and polite when social appropriateness was considered in behavior selection. 

RELATED WORK 

Studies of Human Pointing Behavior 

According to Kendon, the intention of precise pointing is to single out an object which is to be attended to as 

a particular individual object [16]. He categorized this type of pointing as the Index Finger Extended, for which 

not only the index finger, but almost any extensible body part or held object can be used. The idea that index 

finger pointing singles out a particular entity is a well-established idea in human science literature, and it provides 

a useful basis for our categorization.  

Some studies have examined the use of reference terms for people. In such studies, the focus was mainly on 

generating a referring expression (i.e. “This is the coach”) to single out someone as an individual person [17-19]. 

Accordingly, we also consider verbal descriptive terms as part of our model for generating deictic behavior.  

Human-Robot Interaction 

Various generative robot behaviors first look at how humans behave as the basis of behavior design. For 

example, Semel et al. developed and verified a control system for humanoid bipedal locomotion that was 

biologically based on human gait cycles [8].  However, the mechanism that drives us to act a certain way may 

not be obvious to us. Hence, various studies use data-driven methods to extract the underlying mechanisms that 

govern our behaviors, such as recognizing our emotional states through ECG data [20], or identifying features 

that uniquely define us through EEG data [21]. In our work, we first observe human deictic behaviors through 

data collection, and then we incorporate the main factors that were identified in our analysis into our model. 

Similar to Kendon’s work of index finger pointing to single out an object, studies have attempted to model 

the idea of pointing as a way to resolve ambiguity. Bangester et al. focused on the use of full pointing (arm fully 

extended) and partial pointing (elbow bent) by varying the number of pictures in an array to manipulate the 
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ambiguity of a reference [22]. We will combine this idea of resolving ambiguity with an additional politeness 

factor that applies when pointing to people.  

Some studies in human-robot interaction have focused on generating human-like multimodal referring acts 

using both speech and gesture for objects [9-12], and space [14, 15]. Brooks and Breazeal [23] describe a 

framework for multimodally referring to objects using a combination of deictic gesture, speech, and spatial 

knowledge. Schultz et al. focused on spatial reference for a robot using perspective taking [24]. In these studies, 

the robot points to a static object in the environment and produces an appropriate deictic behavior that indicates 

where the target is. We will also study multimodal behaviors in human-robot interaction, but with a focus on the 

social aspects of pointing to people. 

DATA COLLECTION 

Objective 

We collected data from observations of real human deictic behavior so we could generate a model enabling 

a robot to point naturally to people. Since pointing to objects has been explored extensively in other research, we 

chose to focus on ways in which pointing behaviors vary when pointing to people. In particular, we were 

interested in examining three factors:  

Object vs. person: As discussed in the introduction, we expected that people would point precisely to objects 

but less precisely to people.  

Open vs. closed: We expected that people would use less obvious gestures in “closed” conversation, e.g. talking 

about someone in a negative way, than in “open” conversation.  

Known vs. unknown: We wondered whether people’s behavior would be different if they already knew the 

referent, such as in the case where saying their name would be enough to identify the referent without ambiguity. 

Procedure 

We conducted the data collection in a shopping mall, as shown in Fig. 1(a), with 17 participants (11 female, 

6 male, average 23.7 years old), who were paid. We asked the participants to role-play as customers in the 

shopping mall. An experimenter asked the participant’s opinions about other products or visitors in the mall, and 

the participant freely answered using deictic behaviors. The participants were not explicitly instructed to use 

deictic behaviors, but rather instructed to “indicate” who the referent was.  
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We measured the behavior of the participants under 5 scenarios, chosen to measure the factors described 

above. The scenarios were defined as follows: 

 Object: Referring to a product in the shopping mall that does not belong to either the participant or the 

confederate (e.g. “Which of these cellphones do you think looks better?”).  

 Open/Known: Referring to a mutual friend (one of two other acquaintances) in an open conversation. (e.g. 

“With which of our friends did you take the same bus to the mall?”) 

 Open/Unknown: Referring to a random, unknown customer in an open conversation (e.g. “Which person 

did you see at the train station yesterday?”) 

 Closed/Known: Referring to a mutual friend (one of two other acquaintances) in a closed conversation, such 

as gossiping negatively. (e.g. “Which of our friends do you think has no fashion sense?”) 

 Closed/Unknown: Referring to a random, unknown customer in a closed conversation (e.g. “Which person 

do you think looks unfriendly?”) 

Each scenario consisted of 6 pre-determined questions, which were counter-balanced. Before the experiment, 

we had a short ice-breaker session to familiarize the participant with two additional experimenters, who were 

role-playing as the acquaintances in the “known” scenarios. The two acquaintances stood at different locations 

for each question. In the “unknown” scenarios, the participants were instructed to refer to actual customers in the 

shopping mall. Video of each participant’s behaviors was recorded, and as we expected that positions of 

surrounding people might affect the speaker’s deictic behavior (i.e., identifying a referent among many customers 

would be more difficult than when only a few customers were present), we used a human tracking system based 

on 2D laser range finders (LRF) [25] to capture the positions of the people in the environment. Fig. 1 (b) shows 

the map of the environment in which the data collection was conducted. 

The degree of crowding could not be explicitly controlled since the experiment was conducted in a shopping 

mall. However, all trials were conducted under similar conditions during weekday mornings and afternoons, with 

an average of 10.46 people present in the environment across all trials. 
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For each question, the speaker’s pointing type and use of a verbal descriptive term were coded and categorized 

from the recorded videos, as explained below. 

Categorization of Pointing Types 

We classified pointing gestures into three categories (see Fig. 2): “gaze only”, “casual pointing”, and “precise 

pointing”. “Gaze only” was defined as when the speaker only gazes in the direction of the referent, without the 

use of any other pointing gestures. “Casual pointing” was coded as when the arm was only partially extended. 

These also corresponded with the “Open Hand Neutral”, “Open Hand Prone”, and “Open Hand Oblique” pointing 

gestures as defined by Kendon.[16] “Precise pointing” was defined as when the speaker’s arm and index finger 

were fully extended, based on Kendon’s definition.  

There was a range of variation in the amount of extension of the upper arm and the forearm among 

participants, so for simplicity, we categorized the pointing type as precise pointing only when the arm and the 

index finger were fully extended. All other pointing was coded as casual pointing. 

Categorization of Descriptive Terms 

We analyzed the video to identify whether people used a verbal descriptive term. Here, a “descriptive term” 

is defined as an utterance aside from the referent’s name that uniquely singles out the referent from other people, 

e.g. based on relative location (“the person in front of the coffee shop”) or a visible feature (“the person in the 

blue shirt”).  

If only the referent’s name was used, it was classified as “name only”. If the participant used only a general 

deictic reference term (“that person”), it was classified as “no descriptive term”, since terms like “this” or “that” 

may not uniquely single out the referent among surrounding people [6]. 

      
Fig. 1. (a) The shopping mall in which the data collection was performed   (b) Map of the data collection environment       
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Results and Analysis 

For each of the 5 scenarios, a total of 102 reference behaviors were observed (6 questions for each of the 17 

participants). Using the recorded videos, an experimenter annotated the pointing behaviors and whether 

descriptive terms were used by the participants in each trial. This was used for the tabulation of Table I.  The 

experimenter also noted down the referent’s position at the time when the speaker made the reference behavior, 

as well as how long it took for the speaker to make the reference behavior. We noticed that in addition to the use 

of deictic pointing behaviors to describe the referent, some speakers also used other techniques of representation, 

such as using gesture to act out putting on a jacket to describe a referent wearing a jacket. These types of gestures 

were only observed a few times among the participants, and were not a universal phenomenon. In this paper, we 

avoid these special cases and focus only on deictic language and referential gestures. 

The relative frequencies of behaviors for each scenario are shown in Table I, with the most frequently used 

behaviors in each scenario highlighted in bold. 

 
Fig. 2. Categorization of different pointing types 
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Object vs. person: Participants rarely used precise pointing when referring to people (precise pointing: <10.0% 

for all cases), compared with referring to objects (precise pointing: 61.8%). This suggests there is a social factor 

that causes the speaker not to want to point precisely, in which he might risk singling someone out.  

Open vs. closed: In closed conversations, “gaze only” was most common, whereas in open conversations, 

“casual pointing” was most common. Our interpretation is that as pointing precision increases, the noticeability 

of the gesture also increases, hence increasing the likelihood of the referent becoming aware of the conversation. 

This suggests that in closed conversation, the speaker is more concerned about whether the referent becomes 

aware of the conversation than in open conversation.  

In the closed scenario, we also observed that the speaker would often lean closer to the confederate when 

trying to identify the referent. This phenomenon was not observed in the open scenario. This was more evident 

when the referent was nearby in closed conversations. Studies have indicated that the forward body lean conveys 

a sense of intimacy, attraction, and trust [26, 27].  Due to the sensitive information that was being exchanged in 

the “closed” conversation, we speculate that the participants exhibited such behaviors due to feeling a greater 

sense of trust or affiliation with the confederate.  

Interestingly, in closed conversation, some speakers would also giggle or nervously laugh when they were 

describing someone negatively (e.g. “I think that person with the shopping cart has no fashion sense at all.”). We 

did not observe speakers laughing or giggling nervously in the open conversation, suggesting that the speakers 

had higher level of discomfort when describing the referent in the closed conversation than the open conversation  

[28]. 

Known vs. unknown: Interestingly, we did not see much difference in the use of gesture depending on 

whether the referent was known or unknown. However, the speaker used more descriptive terms when the 

referent was unknown to the listener than when the referent was known (e.g. for the Open/Unknown case, 92.2% 

used descriptive terms, while for the Open/Known case, only 40.2% used descriptive terms).  
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In general, we found that the speaker took more time to identify an unknown referent. When the referent was 

unknown to the confederate, the speaker would often repeat or elaborate on describing the referent. For example, 

the speaker saying, “the person wearing the blue jacket is the person I saw on the bus today,” would sometimes 

be followed by the confederate confirming, “you mean that person in blue?” The speaker would then describe 

the referent in further detail such as, “he is also wearing glasses.” On average, the speaker spent 6.25 seconds 

describing an unknown referent, and 4.41 seconds describing a known referent. Some speakers still used pointing 

behavior even when using the referent’s name (e.g. in the Open/Known case, casual pointing with name was 

used 32.4% of the time), even though the name would be enough to unambiguously identify the referent. Perhaps 

this was to make it easier for the listener to understand the reference, or to share the speaker’s area of spatial 

attention. 

 GENERATIVE MODEL FOR ROBOT BEHAVIOR 

Overview 

Previous studies have modeled pointing as a way to resolve ambiguity when referring to an object. We thus 

include understandability as the first factor in our model, which we define to encompass both resolution of 

ambiguity and ease of understanding. For example, a crowded environment where a lot of effort is required to 

identify a person will lower the ease of understanding for the listener.   

We then define an additional factor of social utility, which reflects the desire of the speaker to be polite by 

not singling the referent out (see Fig. 3). We believe that social utility is the main reason for the variations in 

deictic behavior between referring to people and referring to objects.  

We propose a model to generate humanlike deictic behaviors in a robot by combining these factors of 

understandability and social utility into a behavior utility function. There is an inherent trade-off between these 

TABLE I. RATIO OF BEHAVIORS PERFORMED FROM DATA COLLECTION 

Scenario Gaze Only 
Casual 

Pointing 

Precise 

Pointing 
 Desc. Term Name only 

No Desc 

Term 

Open/Known .206 .706 .088  .402 .461 .137 

Open/Unknown .265 .637 .098  .922 0 .078 

Closed/Known .814 .167 .020  .245 .588 .167 

Closed/Unknown .559 .373 .069  .951 0 .049 

Object .049 .333 .618  .980 0 .020 
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two factors. For example, pointing precisely at a particular individual may easily identify that person (high 

understandability), but the speaker may have made that person feel singled out and uncomfortable (low social 

utility).  

To select a deictic behavior for a robot, the behavior utility function is evaluated for each of the potential 

deictic behaviors the robot can perform. We consider six behavior possibilities in our model: one of three pointing 

behaviors (gaze only, casual pointing, or precise pointing) combined with either the use or the non-use of a 

descriptive term. 

Understandability 

Overview 

Regarding understandability, we generally assume that with some effort, the listener will eventually identify 

the target, but pointing makes it easier to search for the referent since the listener can focus their search to a 

specific region that was pointed to. In this sense, pointing has reduced the listener’s time and effort in searching 

for the referent. The speaker’s use of a descriptive term about the referent can also help the listener reduce search 

effort, since providing cues can help to quickly distinguish the referent among other people or objects. We 

introduce this concept of “search effort” as one component of understandability. The more search effort is 

required, the less understandability the listener will have.  

Although the use of a descriptive term may help decrease search effort, it also imparts extra cognitive load 

on the listener to interpret the descriptive term, and hence decreases their ease of understanding. We designate 

this component of understandability as “listening effort”. We modeled the understandability as a function which 

decreases as the sum of these two effort factors. We assumed perfect understanding if no effort is required.  

 
Fig. 3. Overview of Generative Model for Robot Behavior 
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 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑡𝑦 = 1 − (𝑆𝑒𝑎𝑟𝑐ℎ 𝐸𝑓𝑓𝑜𝑟𝑡 + 𝐿𝑖𝑠𝑡𝑒𝑛𝑖𝑛𝑔 𝐸𝑓𝑓𝑜𝑟𝑡) (1) 

Eq. 1 does not include explicit weighting factors for these two terms because, as we will explain below, our 

definitions of Search Effort and Listening Effort implicitly include parameters which can be tuned to adjust their 

relative weights in contributing to understandability. 

Search Effort 

Modeling Based on Search Time 

We modeled “search effort” based on the concept of a visual search task [29], in which an observer is 

searching for a target among a variable number of distractors (other people or features in the environment). 

Longer visual search times roughly equate to higher search effort. Hence, we approximate the search effort as 

linearly proportional by a factor 𝑤1,  with visual search time (𝑡𝑠𝑒𝑎𝑟𝑐ℎ), as shown in Eq. 2. 𝑤1 is a parameter which 

will be tuned.   

 𝑆𝑒𝑎𝑟𝑐ℎ 𝐸𝑓𝑓𝑜𝑟𝑡 =  𝑤1 × 𝑡𝑠𝑒𝑎𝑟𝑐ℎ (2) 

The variable number of distractors, or the total amount of distraction 𝐷𝑇 , is the sum of both the number of 

human distractors and the environmental distraction. To search for a target among distractions, the listener spends 

attention and time, 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛, from item to item until the target is found or until all items have been checked [30, 

31].  The visual search time for such a task is computed as the average reaction time, 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛, spent on each 

distraction, times the total amount of distraction (𝐷𝑇), as shown in Eq. 3. The modeling of 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛  will be 

explained in the following subsections. 

 tsearch = treaction × 𝐷𝑇 (3) 

The Effect of Pointing Precision on Distraction 

Pointing singles out a spatial area, but not necessarily a single entity in the world. Other studies have modeled 

pointing as a cone representing the angular resolution of the pointing gesture [32], which is centered along a 

beam originating from the pointing finger to the intended target, and has the angular width of a given resolution 

angle on either side of the beam. Previous findings indicate a resolution angle of a precise pointing cone of about 

12 to 24 degrees [33]. We approximated the pointing cone’s resolution angle 𝜃𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  to be 15 degrees 
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to either side for precise pointing and 60 degrees to either side for casual pointing. For gaze only, we used an 

angle of 90 degrees, based on the human’s forward-facing horizontal field of view. 

Recall that our visual search time model is based on searching for a target among a number of distractions, 

𝐷𝑇 . Even when there is only one person in the environment, it will still take some time to find the referent, 

particularly when the speaker points casually to a referent located far away.  

The number of human distractors, 𝐷ℎ, is defined as the number of people who could potentially be the 

referent and within the pointing cone’s resolution angle θpointing precision. 

Since the environmental distraction is not discrete, we expect it to increase linearly with the pointing angular 

width. We model 𝐷𝑒 , the environmental distraction, as a constant noise factor τ per unit angular resolution, 

integrated over the residual angular resolution of the pointing cone, excluding the angle 𝜃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡 occupied by 

the referent, as shown in Eq. 4. The value of τ will be larger for more cluttered environments. 

 𝐷𝑒 = τ (2 ∙ θ𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝜃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡)  (4) 

Recall in the previous section that the total amount of distraction 𝐷𝑇  is the sum of both the number of human 

distractors,  𝐷ℎ  and the environmental distraction, 𝐷𝑒 .  Thus, 𝐷𝑇  will be directly influenced by the pointing 

gesture used by the speaker. An example from our data collection, shown in Fig. 4, illustrates how 𝐷𝑇  is affected 

by the different sizes of the pointing cones. In this example, 6 people are present in the speaker’s forward 

horizontal field-of-view of 180 degrees in our shopping mall environment. Using gaze only, all 6 people within 

 
Fig. 4. An example of 𝐷𝑇 for each pointing type in an environment with a total of 6 people. The highlighted people fall within the 

resolution angle of the pointing cone and are used for calculating 𝐷𝑇. Using “gaze only” leads to the highest 𝐷𝑇. 
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the speaker’s view will be included as human distractors, whereas casual pointing reduces 𝐷ℎ to 4 people, and 

precise pointing reduces 𝐷ℎ to 2 people. Likewise, 𝐷𝑒  is affected by the pointing type according to equation (4), 

in this case, 26.33 for gaze only, 17.43 for casual pointing, and 4.08 for precise pointing.   

The Effect of Descriptive Term on Reaction Time 

To distinguish the referent from other people, a speaker may use a unique description term in addition to 

pointing. Previous studies have shown that providing a cue [34] or being familiar with the target [35] can reduce 

the uncertainty of the target and consequently reduce the reaction time. If the referent is known to the listener, 

the speaker will use the referent’s name to describe him in all cases (e.g. it will be unnatural to describe a mutual 

friend as “the man in blue shirt” rather than “Jack”). Thus, we model the reaction time treaction to be shortest 

when the referent is known (see Eq. 5). When the referent is unknown to the listener, search time will be longer. 

However, use of a descriptive term will reduce treaction compared with not using a descriptive term.   

 treaction = {

tk, if known +  using name

tud, if unknown +  using descriptive term
tu, if unknown +  no descriptive term

 (5) 

Listening Effort 

The second factor in the Understandability equation is listening effort, representing the effort associated with 

the time required to listen to a descriptive term. For simplicity, we assign one of two discrete values to the 

listening effort: 𝑐𝑑𝑒𝑠𝑐 if a descriptive term is used, or 𝑐𝑛𝑜 𝑑𝑒𝑠𝑐  otherwise in our model, as shown in Eq. 6. Since 

listening to a name or reference term requires less time, therefore less effort, than a descriptive term, we expect 

𝑐𝑑𝑒𝑠𝑐 >  𝑐𝑛𝑜 𝑑𝑒𝑠𝑐 .  

 Listening Effort = {
cno desc, no descriptive term

cdesc, using descriptive term
 (6) 

Social Utility 

We model social utility as a quantity that will decrease if the speaker makes the referent feel uncomfortable 

or singled out. The loss in social utility is especially high in “closed” cases, when the content of closed 

conversation is leaked to the referent (e.g. the referent hears bad comments about him). To quantify this 

phenomenon, we consider the risk of the referent becoming aware of the conversation (𝑅𝑎𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠), multiplied 

by the cost to social utility (𝐶𝑠𝑜𝑐𝑖𝑎𝑙) if the referent becomes aware, as shown in Eq. 7. 

http://dx.doi.org/10.1007/s12369-016-0348-9
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 Social Utility = −(Rawareness  × Csocial) (7) 

Recall that in our previous section we model precise pointing to have the effect of ruling out distraction. The 

presence of many distractors within the pointing cone, e.g. due to a less precise pointing gesture, makes it less 

clear whether the speaker is actually pointing to the referent, whereas a precise gesture with few distractors leaves 

little room for doubt. Thus we approximate the awareness risk (Rawareness) as the inverse of the total amount 

of distraction: 

 Rawareness =  
1

(Dh+De)
 (8) 

The cost to social utility is dependent upon the openness of the conversation. As explained above, the penalty 

to social utility due to the referent becoming aware of the conversation is much more severe in closed 

conversation than in open conversation. Thus, we model the cost to have one of two discrete values, based on 

the openness of the conversation, where βclosed > βopen. 

 Csocial = {
β𝑐𝑙𝑜𝑠𝑒𝑑 , if conversation is closed

β𝑜𝑝𝑒𝑛 , if conversation is open
 (9) 

Calibration of Our Model 

We manually calibrated our model based on the results of our data collection by adjusting parameters for our 

model until the correspondence between the most frequently predicted behaviors for each scenario (highlighted 

in bold in Table II) and the most frequently used behaviors in that scenario from the data collection (highlighted 

in bold in Table I) were maximized. Table III shows the calibrated parameters. 

TABLE III. CALIBRATED MODEL PARAMETERS 

Search Effort  Social Utility  Listening Effort 

ω1 tk tud tu τ  β𝑜𝑝𝑒𝑛 β𝑐𝑙𝑜𝑠𝑒𝑑 wref  cdesc cno desc 
.013 .03 .07 .3 8.5  .273 30 25[cm]  .011 0 

 

TABLE II. RATIO OF PREDICTED BEHAVIORS FROM DATA COLLECTION USING CALIBRATED PARAMETERS 

Scenario Gaze only 
Casual 

Pointing 

Precise 

Pointing 
 

Desc. 

Term 

Name 

only 

No Desc. 

Term 

Open/Known .196 .804 0  0 1 0 

Open/Unknown 0 .804 .196  .99 .001 0 

Closed/Known 1 0 0  .001 .99 0 

Closed/Unknown 1 0 0  1 0 0 

Object 
0 0 1  .833 0 .167 

 

http://dx.doi.org/10.1007/s12369-016-0348-9
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Examples of Using Our Model 

The examples in Figure 4 and 5 illustrate situations where our model chooses different behaviors based on 

the amount of distraction and the scenario. The figure shows each person’s position in the environment. The 

resolution angles for each of the three pointing cones (90⁰ for gaze only, 60⁰ for casual pointing, and 15⁰ for 

precise pointing) are drawn as different shades of red dashed lines radiating out from the speaker.  

Figure 5 shows examples in the Open/Unknown scenario. The most common behavior in this scenario is 

casual pointing. However, precise pointing is sometimes used in crowded environments, where it is harder to 

identify the referent. This is due to the distraction effect, as modeled previously. 

Fig. 5(a) is a case where the participant used precise pointing to identify the referent. In this crowded 

environment, there were 8 people within the region of casual pointing; thus, casual pointing would yield low 

understandability. However, precise pointing reduces the number of human distractors to 2, providing much 

higher understandability. Fig. 5(b) illustrates a less crowded example. Here, due to the smaller number of 

distractors, the model chooses casual pointing, which yields enough understandability while yielding higher 

social utility.   

Fig. 6 shows two examples in the Open/Known scenario. As in the unknown scenario, the most common 

gesture is casual pointing. However, since the referent is already known to the listener, less ambiguity needs to 

be resolved. Fig. 6(a) shows a crowded environment, but here casual pointing is enough to yield enough 

understandability. When the environment becomes less crowded, as in Fig. 6(b), using gaze only would be 

enough for understandability, while yielding high social utility. 

 
(a) Precise pointing is chosen     (b) Casual Pointing is chosen 

 

Fig. 5. Open/Unknown scenario: examples showing the influence 
of distractors on behavior selection 

 
(a) Casual pointing is chosen             (b) Gaze only is chosen 
 

Fig. 6. Open/Known scenario: examples showing the influence of 

distractors on behavior selection 

http://dx.doi.org/10.1007/s12369-016-0348-9
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Model validation 

The goal of our model is to generate a reasonable policy for producing socially-appropriate behaviors, rather 

than exactly replicating individual people’s deictic behaviors. It is often difficult for a system to replicate exactly 

what humans do due to natural variation or randomness that arises among individuals. For instance, in the 

“Open/Unknown” scenario, there were 5 trials where 5 human distractors were tracked in the environment. Of 

the 5 trials, 1 participant used “gaze only”, 3 participants used “casual pointing”, and 1 participant used “precise 

pointing”. This suggests that some deictic behaviors may be used interchangeably in some situations or dependent 

on the personality or culture of individuals.  For this reason, we aimed to generate robot behaviors based on the 

dominant behavior trends observed from the data collection. 

Table IV shows the confusion matrix of the predicted behavior using our model, based on the observed 

behavior from our data collection.  The overall prediction accuracy was 81.3% for the “Closed/Known” scenario, 

55.8% for the “Closed/Unknown” scenario, 42.1% for the “Open/Known” scenario, and 52.0% for the 

“Open/Unknown” scenario.  

As a result of our calibrated parameters, our model tends to perform on the side of caution (i.e. the robot 

chooses deictic gestures that are less socially awkward). In both “Closed/Known” and “Closed/Unknown” 

scenarios, our model always selects “gaze only.” This is consistent with the human behaviors observed in the 

data collection, where “gaze only” is the most frequently observed human behavior. Furthermore, in the data 

collection, people avoided using precise pointing for both “Closed” scenarios, and our model also behaves in the 

same way - the specificity (true negative rate) for precise pointing in “Closed/Known” was 98.0% and for 

“Closed/Unknown” was 93.1%. 

In the “Open” scenarios, casual pointing constituted the majority of observed deictic behaviors (70.6% for 

“Open/Known” and 63.7% for “Open/Unknown”), and our model similarly predicted casual pointing the 

majority of the time (80.4% in both scenarios).  The model was less successful in reproducing the other pointing 

behaviors, and we believe this variability could be due to individual preferences, or possibly related to unmodeled 

factors such as the precision of the descriptive terms used. It is also possible that gaze only and casual pointing 

can be used interchangeably in some situations, in which case multiple behaviors might be socially appropriate. 

http://dx.doi.org/10.1007/s12369-016-0348-9
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SYSTEM ELEMENTS 

Fig. 7 illustrates the system architecture for autonomously generating the robot’s pointing behavior and 

utterances. We set up the human tracking system in the entrance hall of a shopping mall, covering an area of 

approximately 15m by 15m, as shown in Fig. 1. Pedestrian tracking was performed using the ATRacker2 human 

tracking system presented in [25, 36], utilizing 6 laser range finders (LRF’s) mounted in portable poles placed 

around the environment. This system combines range data from multiple sensors to track the trajectories of 

potential distractors in the environment using particle filters, and can provide position data within 6 cm error at 

a data rate of 37 Hz. 

A dialogue generator able to produce utterances for the robot to speak was also implemented in the robot 

platform.  This was used for producing questions to start each trial, such as, “who did you see at the bus stop 

yesterday?”, as well as for generating deictic utterances based on the openness of the conversation and the 

familiarity of the referent. When necessary, the content for descriptive terms was automatically generated based 

on information entered before the experiment by a human experimenter (i.e., the person’s name and their badge 

color).  

                                                           
2 ATRacker is a product of ATR Promotions: http://www.atr-p.com/products/HumanTracker.html 

TABLE IV. CONFUSION MATRIX FOR OBSERVED BEHAVIOR FROM DATA COLLECTION AND MODEL PREDICTION 

 Closed/Known  Open/Known 

Data  

Collection 

Model  

Prediction 

Gaze 

only 

Casual 

pointing 

Precise 

pointing 

                     Data 

Collection 

Model 

Prediction. 

Gaze 

only 

Casual 

pointing 

Precise 

pointing 

Gaze only 83 17 2 Gaze only 8 11 1 

Casual pointing 0 0 0 Casual pointing 13 61 8 

Precise pointing 0 0 0 Precise pointing 0 0 0 

 
 Closed/Unknown  Open/Unknown 

Data  

Collection 

Model 

Prediction 

Gaze 

only 

Casual 

pointing 

Precise 

pointing 

                   Data  

Collection 

Model 

Prediction 

Gaze 

only 

Casual 

pointing 

Precise 

pointing 

Gaze only 57 38 7 Gaze only 0 0 0 

Casual pointing 0 0 0 Casual pointing 21 52 9 

Precise pointing 0 0 0 Precise pointing 6 13 1 

 

http://dx.doi.org/10.1007/s12369-016-0348-9
http://www.atr-p.com/products/HumanTracker.html
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With current speech recognition technology, it is difficult to accurately understand a person’s speech in a 

noisy shopping mall. This noisy environment may risk the results of the experiments not making sense (e.g. if 

the robot misrecognized the name of the referent chosen by the listener).  To mitigate such risk, a human operator 

acts as a speech recognizer by listening to the listener’s utterance transmitted through a GUI. Upon hearing the 

listener’s response for the chosen referent, the operator manually tags the referent among the set of people 

detected by the human tracking system, and clicks “start” to trigger the calculation of the most appropriate deictic 

behavior in the generative model, which was implemented in the robot using all the equations with calibrated 

parameters. Through its speech synthesizer and actuator, the robot autonomously executes the selected deictic 

behavior based on the output of the model. 

 

 
Fig. 7. System architecture for person-reference model: Inputs from speech recognizer and human tracking system are fed into the 

generative model, which then automatically calculates the appropriate deictic behaviors. The robot then responds verbally through its 
speech synthesizer and generates gaze and pointing gestures with its actuators. 

http://dx.doi.org/10.1007/s12369-016-0348-9
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Robot Platform 

The robot platform we used was Robovie 2, a humanoid robot with a 3-Degree-of-Freedom (DOF) head, two 

4-DOF arms, a wheeled base, and a speech synthesizer. We implemented motion behaviors for the three pointing 

behaviors: gaze only, casual pointing, and precise pointing (Fig. 8), and we implemented utterance behaviors 

incorporating the use or non-use of a descriptive term.  Robovie’s pointing gestures were implemented to best 

resemble what was commonly observed among the human participants. 

EVALUATION WITH A ROBOT 

Hypotheses 

In a field experiment, we compared the performance of our model against a model that considers only 

understandability but not social utility. This comparison model was chosen because it represents a typical state-

of-the-art approach to generate deictic behaviors for referring to objects, and it will be referred to as the “object-

reference model.” We made the following hypotheses for the referent and listener: 

Predictions for referent evaluations  

 The referent will perceive the robot’s behavior as more polite. Since the robot’s pointing will be less precise, 

the referent is less likely to feel singled out.  

 Understandability will be lower with the person-reference model, as the intention of social utility is to reduce 

the risk of the referent’s awareness of conversation.  

 The referent will perceive the robot’s behavior to be more natural because the person-reference model is 

calibrated after observations of real human behavior.  

 Politeness will be more important than understandability, since the referent is not directly involved in the 

conversation. Thus the referent will evaluate the proposed model as better overall than the object-reference 

model.  

Predictions for listener evaluations  

     
 (a) Gaze only  (b) Casual pointing (c) Precise Pointing 

Fig. 8. Examples of Robovie performing the three pointing behaviors 

http://dx.doi.org/10.1007/s12369-016-0348-9
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 Listeners will rate the robot as more polite with the person-reference model, due to sympathy with the 

referent, and because the listener will feel uncomfortable if information is leaked to the referent in closed 

conversations.  

 Understandability will be sufficient with the person-reference model. Although there is a tradeoff between 

understandability and social utility, the model will provide enough understandability for the listener. 

 The robot’s behavior will be rated more natural because the person-reference model is calibrated after 

observations of real human behavior.  

 As the person-reference model determines an appropriate balance between understandability and politeness, 

listeners will rate it better overall than the object-reference model. 

Experiment Setup 

We implemented our model in a communication robot and hired participants to evaluate the robot’s behavior 

in a series of short interactions. The experiment used a within-participants design and was counterbalanced 

between two conditions: person-reference model and object-reference model. 

Procedure 

We compared two conditions: the person-reference-model condition (our proposed model, including 

understandability and social utility) and the object-reference model condition (including understandability, but 

not social utility).  

One participant acted as a listener and conducted short question-and-answer interactions with Robovie in a 

shopping mall. The other participant and a confederate acted as other customers. For each condition, Robovie 

and the listener asked each other a series of 8 questions: 2 questions each for four scenarios: Open/Known, 

Open/Unknown, Closed/Known, and Closed/Unknown, and each time Robovie made a reference to either the 

second participant or the confederate.   

To prepare for the “known” scenarios, the participants and the confederate were asked to introduce 

themselves. This self-introduction was also intended to make the participants feel more invested in the 

conversation so they would become embarrassed if information were leaked in “closed” scenarios.  

http://dx.doi.org/10.1007/s12369-016-0348-9
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Participants’ names were entered into the system before each trial, so the robot could refer to the referent by 

name in “known” scenarios. To standardize the descriptive terms for the “unknown” cases, the human distractors 

wore different colored badges so Robovie could refer to them by their badge color. 

For “open” scenarios, the listener asked Robovie two pre-determined “neutral” questions. For the “closed” 

scenarios, Robovie asked the listener two pre-determined “sensitive” questions, e.g., “Which person do you think 

has bad fashion sense?” The listener answered by selecting either the second participant or the confederate. 

Because we believed that the listener might feel embarrassed by Robovie’s impoliteness, Robovie then repeated 

the opinion stated by the listener while performing the selected deictic behavior, e.g. pointing while saying, “So 

you think Tanaka-san has poor fashion sense?”  

Since the volume of the robot’s voice may affect evaluations, we adjusted the volume of the robot’s voice to 

be louder in the “open” scenarios. For the “closed” scenarios, the volume was adjusted to a level that only the 

listener could hear.  

After the four scenarios in one condition were completed, both participants answered questionnaires. The 

procedure was repeated with the remaining condition (person-reference model or object-reference model). The 

conditions were counter-balanced. At the end of the experiment, the participants were interviewed to gain a 

deeper understanding of their opinions.   

Environment 

All trials were conducted on weekdays in the same shopping mall location as the data collection. As the other 

people in the environment were shopping mall customers, we could not explicitly control the degree of crowding. 

However, we believe that the distribution of people in the environment was fair between conditions. On average, 

in the person-reference model condition, 6.61 people (s.d. 3.75) were present in the environment, compared with 

6.53 people (s.d. 3.93) in the object-reference model condition. 

 

Measurement 

Both the listener and the referent rated the following items on a 1-7 scale (1 being very negative and 7 being 

positive for the respective items) in a written questionnaire:  

 Naturalness of the robot’s deictic behavior. 

http://dx.doi.org/10.1007/s12369-016-0348-9
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 Understandability of the robot’s deictic behavior 

 Perceived politeness of the robot’s deictic behavior 

 Overall goodness of the robot’s deictic behavior 

Because there were variations in the operator’s speed and level of ambient noise, participants were asked not 

to consider timing or volume of the robot’s utterances in their evaluations. 

Participation 

A total of 26 trials were conducted. 33 participants were hired (19 male, 14 female, average age 23 years old). 

19 participants played the roles of listener and referent in different trials, but no participant played either role 

twice. 

RESULTS 

Verification of Hypothesis 1(Referent) 

Figure 9(a) shows the questionnaire results from the referents. A one-way repeated-measures analysis of 

variance (ANOVA) was conducted with one within-participants factor, model, in two levels: object-reference 

model and person-reference model, for all measurements. The analysis revealed significant differences in overall 

evaluation (F(1,25)=21.763, p<.001, η2=.465), politeness (F(1,25)=15.391, p=.001, η2=.381), and naturalness 

(F(1,25)=7.335, p=.012, η2=.227), and there was an almost-significant difference in understandability 

(F(1,25)=3.362, p=.079, η2=.119).   

These results support our hypothesis that the referents would perceive the overall behavior to be better with 

the person-reference model. The result also supports our predictions for politeness and naturalness, but not our 

prediction for understandability. 

Verification of Hypothesis 2 (Listener) 

Figure 9(b) shows the questionnaire results from the listeners. A one-way repeated-measures ANOVA was 

conducted for all measurements. There were significant differences in overall evaluation (F(1,25)=10.192, 

p=.004, η2=.290), politeness (F(1,25)=25.0, p<.001, η2=.500), and naturalness (F(1,25)=4.972, p=.035, η2=.166), 

but no significant difference in understandability (F(1,25)=2.235, p=.147, η2=.082).  

These results support our prediction that listeners would rate the person-reference model better in overall 

evaluation, as well as our predictions for politeness and naturalness. 

http://dx.doi.org/10.1007/s12369-016-0348-9
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Analysis of understandability and social utility on the behavior-selection process 

Our comparison experiment demonstrates how our person-reference model that considers both 

understandability and social utility can be used to improve the overall robot’s deictic behavior, as compared with 

a model considering understandability alone. We provide a numerical analysis on the interactions observed in 

our experiment, in order to demonstrate how the values of understandability and social utility contributes to the 

behavior-selection process of our person-reference model under different scenarios. 

To illustrate the tradeoff between understandability and social utility, Fig. 10 shows plots of the numerical 

values of understandability, social utility, and total behavior utility as a function of the amount of distraction in 

the environment (based on a “gaze only” pointing cone) for all of the “Open/Known” trials in our experiment.  

In this scenario, the robot’s verbal behavior defaults to using the referent’s name (i.e. without the use of a 

descriptive term), thus only 3 deictic behaviors are possible. Based on equations (1) – (3), we expect 

understandability to decrease linearly with 𝐷𝑇 , as observed in Fig. 10(a). Precise pointing, with the smallest 

θpointing precision, results in the highest value in understandability, followed by casual pointing and gaze only. 

From equations (7) and (8), we expect the negative effect of social utility to become weaker as 𝐷𝑇  increases, as 

seen in Fig. 10(b), since the greater amount of crowding reduces the feeling of being singled out. Note that in 

Fig. 10(b), many of the data points for precise pointing fall below the bottom of the graph, since precise pointing 

leads to the lowest social utility.  

 

 
(a) Referent evaluation between conditions                                                         (b) Listener evaluation between conditions 

Fig. 9. Evaluation results of Robovie’s behaviors between conditions 

 + p<.1   *p <.05   **p < .01   *** p<.001 

1

2

3

4

5

6

7

Naturalness Understandabilty Politeness Overall

Referent Evaluation

Person-reference model Object-reference model

┌ ** ┐ ┌ *** ┐ ┌ * ┐ ┌ + ┐ 

1

2

3

4

5

6

7

Naturalness Understandabilty Politeness Overall

Listener Evaluation

Person-reference model Object-reference model

┌ * ┐ ┌ *** ┐ ┌ ** ┐ 

http://dx.doi.org/10.1007/s12369-016-0348-9


 
 

 

 
International Journal of Social Robotics (preprint) 
The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-016-0348-9 

 

Finally, our person-reference model considers both understandability and social utility. As shown in Fig. 

10(c), the behavior utility of “gaze only” decreases as the environment becomes more crowded, whereas the 

behavior utility of “casual pointing” has an increasing trend as 𝐷𝑇  increases. The model selects the behavior with 

the highest behavior utility, resulting in “gaze only” when 𝐷𝑇  is low, and “casual pointing” as 𝐷𝑇  increases. The 

behavior utility of “precise pointing” is too low to be shown on the figure, although it might be selected in 

extremely crowded situations. By contrast, the object-reference model would choose “precise pointing” in all 

cases, to maximize understandability regardless of social factors. 

 

Next, we provide an analysis of the behavior-selection process of our person-reference model, or the behavior 

utility values, for all scenarios. When the referent is unknown, a verbal description can also be used to resolve 

ambiguity of the referent. Verbal description increases understandability, but has no effect on social utility. 

 
Fig. 10. The x-axis is the total amount of distraction, 𝐷𝑇, in the environment observed by the robot’s forward facing horizontal field-of-
view of 180 degrees at behavior execution time. For the three pointing behaviors in “Open/Known” scenario, the values of: (a) 

“Understandability” is negatively linear proportional to 𝐷𝑇, (b) “Social Utility” is inversely proportional to 𝐷𝑇, (c) “Behavior Utility”, 

gaze only has the highest behavior utility when 𝐷𝑇 is low, and casual pointing has the highest behavior utility as 𝐷𝑇 increases. “Precise 

pointing” is too low to be shown on this figure, although it might be selected in extremely crowded situations. 

http://dx.doi.org/10.1007/s12369-016-0348-9
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Therefore, the robot will use verbal description along with a pointing gesture for all unknown referents, as can 

be seen in Fig. 11 (c).  

In “closed” conversation, the robot always chooses to use “gaze only,” as shown in Fig. 11 (a) and (c). The 

high value of 𝐶𝑠𝑜𝑐𝑖𝑎𝑙  leads to a greater influence of social utility than understandability in the values of behavior 

utility. As a result, the behavior utility follows the same trend of its social utility.  

In “open” conversation, a tradeoff between understandability and social utility is observed in the behavior-

selection process. In the “Open/Known” case, the robot uses “gaze only” when 𝐷𝑇  is low. As 𝐷𝑇  increases and 

requires a more precise pointing gesture to resolve ambiguity, the robot uses casual pointing (Fig. 11 (b)). In the 

“Open/Unknown” case, the robot mostly used casual pointing together with a verbal description in our 

experimental environment. However, an increasing trend of using precise pointing together with a verbal 

description can be observed when there is a large amount of distraction (Fig. 11(d)). 

 
Fig. 11. Behavior Utility (normalized by scenario) of the three pointing behaviors calculated by the model for all experimental trials. The 

deictic behavior with the highest behavior utility is chosen by the robot. (a) “Closed/Known”: gaze is always selected, (b) “Open/Known”: 

Gaze is chosen when 𝐷𝑇 is low, but casual pointing is chosen as 𝐷𝑇 increases, (c) “Closed/Unknown”: Gaze-only with description is 
always chosen, (d) “Open/Unknown”: Casual pointing is mostly chosen, but when the total amount of distraction is high, precise pointing 

with description is chosen. 

http://dx.doi.org/10.1007/s12369-016-0348-9


 
 

 

 
International Journal of Social Robotics (preprint) 
The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-016-0348-9 

 

DISCUSSION 

Interview results from the participants 

Many participants said that they rated our proposed model better because the robot behaved more politely. 

For listeners, it was particularly embarrassing when the robot repeated his/her negative comment about the 

referent together with precise pointing. One participant commented she was worried the referent might get angry 

if he overheard the negative comments about him.  It is interesting to note that one participant perceived the robot 

to be more “child-like” in the object-reference model, since the participant associated impoliteness in the robot’s 

pointing behavior with the behavior of a child. 

No significant difference was found for understandability. One possible reason is that the referents were asked 

to watch and evaluate the robot, so they were inevitably more aware of the conversation than a typical bystander 

would be. 

 Politeness in Pointing 

When we first tried to set up a preliminary observation of people’s pointing behavior, we set up a scenario 

where we asked the participants to imagine role-playing as a store clerk who was trying to indicate a store 

manager to a customer. In this scenario, we found that often the participants role-playing as the clerk were 

reluctant to use the index-finger pointing to identify the store manager in almost all scenarios, even when it was 

ambiguous who the store manager was due to the crowds. Instead, the participants used the more polite form of 

pointing, often with their palm up and hand open, to show the customer the whereabouts of the store manager. 

This was categorized as “Open Hand Supine” by Kendon, which may be semantically described as presenting or 

being ready to receive [16, 37]. It is possible that the participants were using this gesture to present the manager 

(i.e. the referent) to the customer.  

Keeping in mind of these observations, it is important to consider the role and purpose of the robot when 

designing social behaviors. As described, a person may use more polite pointing gestures when interacting with 

a professional relation like a superior or customer, as compared to interacting with a friend. Thus, for example, 

a customer service robot might need to give priority more polite pointing behaviors, whereas a personal 

companion or non-humanoid robot might choose to maximize the understandability in its pointing behavior.  

http://dx.doi.org/10.1007/s12369-016-0348-9
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Limitations and future work 

In this study, we developed a model for choosing deictic gesture and utterance behaviors that balance the 

issues of being polite and being easy to comprehend.  While our study used a general categorization of gestures 

such as casual and precise pointing, there are many details which could be investigated in future work regarding 

the implementation and details of those gestures. For example, Kendon contrasted the semantic implications for 

different orientations of open-hand pointing – when a person introduces another person, they usually use an open 

hand, palm up gesture as an implication for offering [16], whereas when a person makes a critical remark, they 

use an oblique open-handed pointing. Incorporating the semantic meanings of the pointing gestures into our 

models may extend the robot’s role and the scope of its interaction. For instance, a robot shop assistant presenting 

the manger or an educator making a critical remark may require the robot to adapt different subtle pointing hand 

orientations. Our study also examined the effect of the use or non-use of descriptive terms, but future research 

could investigate the relative effects of different kinds of descriptive terms or different levels of specificity. It 

may also be possible for models to be developed to quantify the degree of precision of a given pointing gesture, 

enabling more precise estimation of the pointing cone. 

We understand that the use of kinesics or deictic behaviors may vary among cultures.  The participants of 

this study were all Japanese, in which using body language may be remarkably restrained away from their in-

group [38].  It is also worth noting that Japanese people may refrain from making hand gestures when the third-

person referent is present, possibly to reduce the opportunity for offending anyone present and help sustain 

contextual harmony [39].  Imaginably, if this study was conducted in another culture, we might observe 

participants using more precise pointing. However, we believe our model does represent a universal phenomenon 

of how people point toward others, and hence, a valid model for robot deictic behavior as well.   

In our experiment, a human operator was employed for two tasks: (1) to input the participant’s name and the 

color of their name tag into the system before each trial, for later use in generating descriptive terms; and (2) to 

act as a speech recognizer in real time and tell the robot which person the chosen referent was.  If this technique 

were to be used in a real social robot application, we expect that the referent’s name would already be known, 

and the other functions could potentially be automated, e.g. using computer vision for identifying clothing color, 

and using gesture recognition and speech recognition to understand who the referent is. While implementing 
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these functions robustly is not trivial, we expect that with improvements in sensor technology the technique could 

be employed in an autonomous way. 

While there are several possible directions for future work and refinement of the techniques presented here, 

we believe that this study has provided a successful demonstration of a practical technique for reproducing an 

important phenomenon which occurs in real human deictic behavior. 

CONCLUSION 

In this work, we have presented a model enabling robots to generate socially-appropriate deictic behaviors 

for referring to people, based on the openness of the conversation and familiarity with the referent, as well as the 

positions of people in the environment. In an empirical data collection, we observed that people’s behavior varied 

both in terms of their pointing behaviors (“gaze only”, “casual pointing”, and “precise pointing”) and their use 

of descriptive terms. We confirmed that people’s deictic behaviors towards another person differed from their 

deictic behaviors towards objects, and we observed variation according to social context and presence of other 

people in the environment. From this data we developed a model enabling a robot to select socially-appropriate 

deictic behaviors towards humans based on a balance between understandability and social appropriateness for 

a given scenario. 

Finally, we evaluated our model using a real robot in a shopping mall in an experimental comparison between 

our proposed model and a simpler model based only on understandability. The results showed significant 

differences for perception of the robot’s deictic behaviors, in which the robot’s behaviors were perceived to be 

more natural (p < 0.05 for both the referent and listener), polite (p < 0.01 for the referent and p < 0.001 for the 

listener) , and better overall (p < 0.001 for the referent and p < 0.01  for the listener) when using our proposed 

model. These results confirm that by considering social appropriateness in the model we were able to generate 

better social behavior for the robot. 
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