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Data-driven HRI: Learning social behaviors by
example from human-human interaction
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Abstract— Recent studies in human-robot interaction (HRI)
have investigated ways to harness the power of tloeowd for the
purpose of creating robot interaction logic through games and
teleoperation interfaces. Sensor networks capablef @bserving
human-human interactions in the real world providea potentially
valuable and scalable source of interaction data #t can be used
for designing robot behavior. To that end, we pres# here a fully-
automated method for reproducing observed real-wod social
interactions with a robot. The proposed method inaldes
techniques for characterizing the speech and locortion observed
in training interactions, using clustering to idenify typical
behavior elements and identifying spatial formatios using
established HRI proxemics models. Behavior logic Isarned based
on discretized actions captured from the sensor datstream, using
a Naive Bayesian classifier. Finally, we propose deniques for
reproducing robot speech and locomotion behaviorsia robust
way, despite the natural variation of human behavics and the
large amount of sensor noise present in speech regation. We
show our technique in use, training a robot to playthe role of a
shop clerk in a simple camera shop scenario, and vdemonstrate
through a comparison experiment that our techniquesuccessfully
enabled the generation of socially-appropriate sped and
locomotion behavior. Notably, the performance of outechnique
in terms of correct behavior selection was higherttan the success
rate of speech recognition, indicating its robustngs to sensor noise.

Index Terms— Human-robot interaction, data-driven learning,
learning by imitation, social robotics, service robts.

|I. INTRODUCTION

s robots become more prevalent in the modern bea,

field of human robot interaction (HRI) provides th
promise of integrating robots into everyday humén These
service robots are gaining presence in museums, [bffices
[6, 7], elder care [8, 9], shopping malls [10, 1d4id healthcare
facilities [12]. The ability of the robots to solijeintegrate into
those environments will be essential. For exampleshop
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assistance robot needs to be able to greet custpeswer
guestions, give recommendations, guide to variquslyzts,
and assist the customers in various situations.

One approach for designing interaction logic foolaot is to
explicitly program the behaviors the robot shoutdaite, the
expected inputs from the environment, and the di@tuules
it should follow. However, this can be a difficylirocess,
heavily dependent on the designer’s ability to imag variety
of social situations (for example, anticipating af the
questions people may ask the robot) and use thigiition to
specify social behaviors and execution rules fa thbot,
which may be difficult to articulate. This procesan be very
labor intensive, and it becomes even more diffitolcreate
robust interactions when natural variations of hnrbhahavior
and errors due to sensor noise are considered.

We believe that a data-driven approach to intevadaiesign
could provide solutions to many of these problesdirectly
capturing behavior elements such as utterancesijalsoc
situations, and transition rules from a large nunddeeal,in-
situ human-human interactions, it may be possible $dyeand
automatically collect a set of behaviors and irttéoa logic
that can be used in a robot. This would reducditfieulty and
effort of interaction design, and it could enablerenrobust
interaction logic, since sensor errors and vanmatbbehavior
would be implicitly considered.

Thanks to recent advances in sensor technologyijdba of
data-driven interaction design based on real-winttieractions
could soon become a realistic possibility. Highes®on
tracking systems are being deployed in public spaseabling
passive collection of natural human interactioradag], and
technologies such as microphone arrays may soowidero
usable sound source localization and speech regmgrin
noisy real-world environments [14]. Such technoésgcould

allow enormous amounts of human behavior data to be

collected effortlessly. For example, deploying semetworks
in a chain of retail stores could provide hundrefithousands
of example interactions in a matter of few monttisich could
be used to train a robot to perform the role di@psclerk.

The possibility of effortless collection of largenaunts of
interaction data is what gives importance to tHisai of data-
driven interaction design. HRI researchers haventig begun
to take advantage of the scalability of the welbr&n robots
based on collected interaction data from the criigd16]. We
believe that capturing human-human interactive tieha



through sensor networks will prove to be anothevexful and
scalable way to leverage the wisdom of the crowdrtate
interactive robots.

Our objective in this study is to provide a proéfeoncept
of such a data-driven interaction design methodolagd to
provide observations and suggest directions foruréut
development of this powerful concept. We preserftilby-
autonomous method for training a socially-interaetrobot
from observed examples of human-human interactibrerein
behavior contents and interaction logic are exédatirectly
from noisy sensor data without human intervention.

Included in this work are techniques for (a) idfyfiig
typical action elements from a set of example axtdons, (b)
reproducing observed human behaviors in a robgtitdekigh
amounts of sensor noise, and (c) robustly seleatimgext-
appropriate behaviors for the robot to executeivia kocial
interactions.

Il. RELATED WORK

As mentioned above, our goal is to utilize the apwy
capturing people’s movement and speech duringHiwaan-
human interaction and automatically generating raton
logic for reproducing the observed behaviors basethe set
of passively-collected data. Such ideas of leartifogn data
and using the crowd for learning have been explaned
number of different areas within the field of sée@botics.

A. Creating Interaction Content

In designing interaction flows for social robotsveral
custom frameworks have been developed to explititgak
down interaction into subcomponents, such as &tgtat) and
behavior actuation (output) components, and sp&Gfysition
logic to direct the execution flow based on datarfrsensor
inputs [17, 18]. Teleoperation interfaces have aksen used to
iteratively build interaction content over a periofdtime [19,
20]. In this work, we use sensors to capture ictéra content
directly from human interactions.

B. Learning from Data

In robotic tasks like manipulation,
approaches such esarning by demonstratioare often utilized
to learn from a dataset of examples in order togadyce a
demonstrated task, as it is easier for humansudivag non-
robotic-experts, to input poses by moving an armmunady,
than to explicitly specify them numerically. Someamples
include trajectory following [21, 22] or joint matn replication
[23]. Typically this is seen as a way to input sEgsmotor
patterns, but not cognitive and decision-making/sski

In social robotics, machine learning has been tsddach
low-level behaviors, for example, to mimic gesturasd
movements [24], and to learn how to direct gazegponse to
gestural cues [25]. In one example, pointing armkdeehaviors
were recognized in an imitative game using a hiddenkov
model [26]. The challenge in using a data-driveprapch to
learn an entire social interaction is the levetofplexity that
goes into decision-making process. The ways wea@cbften
influenced by our intentions, and it is still aneopguestion to

how we can extract intentions from only observedavéors.

Data-driven dialogue systems have been demonstiated
robots which infer meanings from spoken utteranBgbskiet
al. developed an algorithm which allowed a humamteract
with a robot with a subset of spoken English lamguian order
to train the robot on a new task [27]. Meetal. used a data-
driven chunking parser for automatic interpretatidrspoken
route directions for robot navigation [28].

Unlike other works, we focus on training examplaséd on
real human-human interaction, with natural spokieiodue.

C. Using the crowd for learning

With the advancement of high-precision trackingtsys
able to monitor real social environments [13, 9% becoming
possible to collect large amounts of detailed sBxtdon data
with little effort. This suggests the possibilityf asing a
“crowdsourcing” approach, like the distributed teiclues used
over the web to solve complex problems, e.g. usmrs
Amazon’s Mechanical Turk helping to annotate imagms
grasp planning [30].

The use of real human interaction data collectexh fsensors
for learning interactive behaviors has been inges#id in
numerous works. The robot JAMES was developed teese
drinks in a bar setting, in which a number of sujsed (i.e.
dialog management) and unsupervised learning tqabaif(i.e.
clustering of social states) have been appliedeton social
interaction [31]. In contrast, we propose a conghet
unsupervised approach for both abstraction andesing of
social states as well as for robot behavior geiwarat

In Young et al.'s work [32] [33], a person providas
example of an interactive locomotion style, whishused to
teach the robot to generate interactive locomdtisfeaviors in
real time according to that style. We also propmsase real
human interaction to train the robot, but our fo@usot only
the robot’s motion, but its speech as well.

Connectivity to the web has also changed the wiayation

data can be collected. The Robot Management System

framework was developed to make learning of maaijmmh
and navigation tasks easier by collecting demotistra from

machine leagnin remote users through a browser as a game [16]R€k@urant

Game used annotated crowdsourced data to genésitaced
representation of data to automate game charg@4é}sThe
Mars Escape online game used crowdsourcing to ledot
behaviors [15, 35, 36]. The idea was to use a davan
approach to develop HRI behaviors from playersrobaline
collaborative game to provide large amounts oftrgj data
and reproduce behaviors in a real autonomous robot.

Our work complements these approaches by consglerin
crowd-based data collection from sensors in a physi
environment, where some new challenges includelviego
recognition ambiguities due to sensor noise andurakt
variation of human behavior.

A. Sensor Environment
To collect human-human interaction data for ourrigsy

DATA COLLECTION



Panasonic Sony g
Service
i , e Counter m Canon Door

Fig. 1. ( Environment for our data collection
study, we prepared a data collection environmetit eisensor
network, including a human position tracking systamd a set
of handheld mobile phones to use for speech retiognito
capture participants’ motion and speech.

The position tracking system consists of 16 ceilimgunted
Microsoft Kinect RGBD sensors, arranged in rowsttiBla
filters are used to estimate the position and kwigntation of
each person in the room based on point cloud d&fa [

Ideally, we would like to collect people’s speedsgively.
However, modern speech recognition technology ilk rsit

) Kbap of the room

(c) Interaction between a sheplke and a customer
the customer a different feature to look for eaichet The
shopkeeper was not informed of the chosen sceramibwas
instructed to allow the customer to browse, to arsany
guestions the customer had, and to gently introguwoducts
when appropriate, as shown in Fig 1(c).

Before the experiment, the participants were tiitteuse
the Android phone and given a list of camera festup ask
about. The shopkeeper was given a reference shettiting
a set of feature specifications for each camera fitactice
trials were designed to help the participants becaocustomed

robust enough to use with ambient microphones whea using the Android phone and to illustrate thHedeénces

background noise exists in the environment [37, B8} that
reason, we developed a smartphone application pbuica
speech directly from a hands-free headset, anthes&éndroid

between the interaction scenarios.
The goal of the data collection was to capture aitgide
interactions, so we restricted the scope of theaie to focus

speech recognition API to recognize utterancesliagrthe text on providing information about the cameras. Fds teason,
to a server via Wi-Fi. The user wears a handstiesglset and we asked the participants to keep the interactsingple by
touches anywhere on the mobile screen to indichte tavoiding other topics, such as negotiating the epri€¢ the

beginning and end of their speech, so no visuahnttn is
required, making it possible to conduct naturalefamface
interactions without breaking eye contact.

camera (e.g. “can you give me a better deal?”).
Furthermore, we found it necessary to remind ppdits
not to make up new information that did not existaur

Although the study was conducted in Japan, we foandscenario. For example, if a shopkeeper participaas asked

greater variety of tools available for analysi€ofjlish text, so
the interactions in this study were carried ouEnglish.

B. Training Interactions

“what kind of warranty policy do you have?”, whiglas not
defined in the scenario, they would have had torawige an
answer. These improvised responses would not bielUse
learning because of inconsistency over time (intpads, one

We chose a shopping scenario in a camera shopgettishopkeeper participant said the store had a 1-yearanty

where we asked one person to role-play as a shppkead

policy on one occasion, but later said it was &&ryvarranty).

one person as a customer. To create a set of ngaini

interactions, we set up three product displaysresmting
different digital camera models, in an 8m x 11merkpent
space, shown in Fig. 1(a) and (b). Each produgti@yshad a
feature sheet with a short list of the camera’svanht features,
such as “optical zoom” or “megapixels”. We also set a
service counter, where we instructed the shopketepstand at
the start of each interaction.

Participants were members of our laboratory anerated
with each other in English. Four fluent English aers role-
played as the shopkeeper. 10 participants, inotudirfluent
English speakers, played the role of customer. Eastomer
took part in 10-20 interactions, for a total of 1wials.

In each trial, the customer was instructed to pdésrin one
of the following scenarios: (1) a need-based customho is
looking for a camera with a specific feature (4ls), (2) a
curious customer, who is interested in multiple eeam (4
trials), or (3) a window-shopping customer, whofere to
browse around alone (2 trials). In order to hekp plarticipant
to naturally role-play as a specific type of custoywe gave

C. Example of human-human interaction

Within the defined scenario, the participants iatéed in a
free-form way, using natural conversational langyaand a
reasonable degree of variation in people’s phrasimgl
terminology was observed. Table 1 illustrates Haisety with
transcripts from two example trials by the samdigigant: (1)
a need-based customer looking for a camera witje laremory
storage, and (2) a curious customer interestearnmecas with
good battery life.

IV. PROPOSEDIECHNIQUE

A. Overview

We implemented a fully unsupervised data-driveatsgyy to
enable a service robot to reproduce human behawsimg only
captured data from human-human interaction. Ourcgmh
represents interaction data via several abstragtamfollows:
e Customer speech is vectorized using Latent Semantic

Analysis (LSA) and other text processing technig(&sc.

V. B.1).



TABLE |. EXAMPLES FROMHUMAN -HUMAN INTERACTION

Example of a need-based customer

Example of a curious customer

S: (Approaches customeHi are you looking for anything in particular @ C: (Goes to Sor)yExcuse me.

C: Yes | would like to... | am looking for a camer&wgood storage
memory.

S: (Guides to CangnOk the Canon Rebel XTi can hold 10000 photos.
C: Ok, that is very good. What about the price?

S: This camera is $400.

C: | see. Is it heavy?

S: Yes, very heavy.

C: How much?

S: Like, a kilogram.

C: | see, that is very heavy. Well | will think alidt. Thank you. l(eaves
shop

S: Sure, no problem.

S: (Approaches customgeYes sir how can | help you?

C: I am looking for a camera that | can use farragltime without changing the
battery.

S: (Guides to CangnOk we have a couple of options for that; overeheithe
Canon Rebel XTi. It has a 7 hour battery life.

C: | see, and other possibilities?

S: (Guides to Panasonji®ther possibilities for long battery life are the
Panasonic Lumix... this can run for 9 hours on stgndb

C: So this is longer. What's the difference betwtbese two?

S: This one is far worse in photo quality and iesio't have a replaceable lens.
C: | see, so probably I am more interested in theromodel. | will think a little
bit about it. Thank you very mucH.€aves shop

S: No problem sir.

» Shopkeeperspeechis similarly vectorized, and it is then

categorized into speech clusters representing diyic
similar, discrete utterances (Sec. IV. B.1).

B. Abstraction
One challenge of using a data-driven approachaiml|éom

« Customer and shopkeepeajectories are segmented into human-human interaction is that human behavior giesua

stopped and moving segments, which are then chdter
identify typical stopping locations and typical oot
trajectories (Sec. IV. B.2).

very high-dimensional feature space, even consigeanly
speech and locomotion (social behaviors such as, gesture,
and facial expression are not considered in theentistudy).

« An interaction state is defined based on the relativeln practice, however, the variation of human bebiagiccupies

positions of the customer and shopkeeper, basedsan of
two-person spatial formations taken from other HiRid
proxemics work (Sec. IV.B.3).

We then analyze the training data to identify dégeactions,

only a small manifold within this high-dimensionsphace —
people usually perform actions in predictable wayd follow
common patterns. We introduce here a number ofaaiiin
techniques designed to capture these patterngjén to reduce
the dimensionality of the learning problem and diisth the

comprised of speech and/or movement of the custamer €fféCts of sensor noise.

shopkeeper (Sec. IV.C.2), and we train a machiaeniag
classifier to predict the appropriate shopkeepéioamutput
which follows an observed customer action input.

First, we perform unsupervisetlstering to identify sets of
typical actions in the training data. Clusteringp@&formed for
speech data to deal with the large amounts of rasseciated

The input (Sec. IV.C.3) to the classifier is the processelyith speech recognition (Sec. IV.B.1), and also fieotion

training data — a vector consisting of the custésnspeech
vector, spatial states for the customer and shquteéSec.
IV.C.1), and the current interaction state of thistomer and
shopkeeper.

trajectories observed by the tracking system, deoto identify
typical stopping locations and motion paths inehgironment
(Sec. IV.B.2).

Next, we model each interaction as consisting eéguence

The output (Sec. IV.C.4) is a discretized shopkeeper actioﬂf stableinteraction states which last for several turns in a
comprised of a speech cluster combined with a targgialogue, recognizable by distinct spatial formasicsuch as

interaction state.

The top part of Fig. 2 shows an overview of howttiaiing
data is processed to generate an input vectorytihand the
corresponding shopkeeper action vector (“labelf) tfaining
the machine-learning classifier (Sec. I1V.D.1-3).

During real-time operation, the sensor data areqe®ed in
the same way as they were during training — a veéstouilt by
combining the LSA vectorization of the customererdahce
with the spatial and interaction states abstrafrieah motion
data. This vector is input to the trained classifidfienever a
customer action is detected. A shopkeeper actiothén
predicted, and the speech and spatial formatidheopredicted
action are executed by the robot (Sec. IV.D.4).

The bottom part of Fig. 2 illustrates the procegsinf the
sensor data as an input to generate robot behavieal-time.

The following subsections will explain the detaifsthese
abstraction and vectorization processes, as weHleasetup of
the learning algorithm itself.

talking face-to-face or presenting a product. Thedeting of
interaction states helps to generate locomotianstable way,
to specify robot proxemics behavior at a detailckl, and to
provide context for more robust behavior prediction

1) Speech Clustering

A great deal of variation was present in the speagiured
in our training data, including alternative phrasre.g “what
is the price” versus “how much does it cost,” a8l we speech
recognition errorse.g. “how much does the scammer cost”
rather than “how much does this camera cost?” Fadlenge
of speech processing is to represent these utesanca way
that preserves the similarity between phrases \withilar
semantic meaning.

The strategy for processing speech elements isrshoig.
3. As soon as an utterance was captuspdech recognition
was performed. We theextracted keywordsusing a cloud-
based service and created a vectorized represantatithe
speech results and keywords usiregent Semantic Analysis
(LSA).

Further processing was applied to shopkeeper'sauites
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Fig. 2. Overall procedure for human-human intéoacfdata collection) and human-robot interactionlifie)

only, with the goal of minimizing errors so thatthcould be
used for generating robot speech. After vectozanf the
utterances, we used unsupervisktstering to group them into
clusters of similar utterances, antypical utterance was then
chosen from each cluster, to be used as contesyfthesized

similarity. To capture keywords in the phrases, used
AlchemyAPI?, a cloud-based service for text analysis based on
deep learning.

Latent Semantic Analysis:We created a vector to represent
each utterance using Latent Semantic Analysis (L.S#\)

speech output. Clustering was not applied to customtechnique commonly used for classifying documemilarity

utterances, so that the information in the uttezarector could
be kept for the purpose of prediction.

in text mining applications [39]. To achieve thig performed
several steps which are standard in text processi@gemoved

Speech recognition: For automatic speech recognitionstop words, applied a Porter stemmer [40] to remove

(ASR), we used the Google Speech API. An analyEik00

utterances from the training interactions showed 3% were
correctly recognized, 30% had minor errors, egan‘it should
video” rather than “can it shoot video,” and 17%eeomplete
nonsensee.g."is the lens include North Florida.”

conjugations, enumerated n-grams (up to N=3), caetpa
term frequency — inverse document frequency (TF}ID&trix,
and computed the singular-value decomposition effth-IDF
matrix, truncating it to reduce the dimensionatifythe space.
The list of keywords returned for each utterance separately

Keyword extraction: Phrases like “I am looking for a processed using LSA, and those columns were adddhdet
camera with large memory size” and “l am lookingda@amera feature vector.

with large LCD size,” have different meanings despéxical

1 http:/ww.alchemyapi.com

We chose the dimensionality for the truncated LS#rir to
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Fig. 4. An example of typical utterance selecfimm a shopkeeper speech
cluster (ID 292). The utterance vectors have bedapsed to two-
dimensional vector using multidimensional scaliMPS) for visualization.
The closest utterance to the centroid and the dypitterance chosen using
our technique are shown

achieve a 50% “share” (percentage of cumulateduting
values) as described in [41]. The numbers of dinoassand
instances for each group are presented in Table 2.

Clustering of shopkeeper utterancesWe used dynamic
hierarchical clustering [9] to group the observédpkeeper
utterances into clusters representing unique spekshents.
166 clusters were obtained.

Trajectory Cluster

Trajectory Segmentation

Stopped Segments \ Moving Segments \

Characterization

| Typical Trajectory \

Clustering (Spatial) Clustering (DTW) Start Location |

‘ Stopped Locations ‘ Trajectory Clusters End Location \

Fig. 5. The abstraction of motion elements intpped locations artdajecton
clusters

B Labeled Location
@ Customer stopping points

A
A Shopkeeper stopping points| Panasonic Aﬁ.
u o, iy
N 2
. &

Middle “

Rp Log » @
“\, ifgy_z;

~ Service o
Counter

= AN

Door
L]

Fig. 6. Customer (O) and shopkeepéy) (stopped locations. Solid mark
show the centroids of clusters of stopped segmehish are marked
“stopped locatioris Customer and shopkeeper data are shown togletheas
of comparison.

m/s as a threshold speed for trajectory segmentaiite then
segmented all observed trajectories in the trairdata into
“stopped” and “moving” segments, and clustered e¢hos
segments to identify the typicstopped locationsandmotion
trajectories present in the data set, as illustrated in Fig. 5.
Stopped location: The “stopped” segments were clustered
spatially with k-means clustering to identify tyaicstopping

Typ|ca| utterance extraction: From each Shopkeeper |Ocati0nS, six for the customer and five for the;ﬂk’eeper. The

speech cluster, one utterance was selected foinusehavior
generation. We found that simply choosing the atiee closest
to the centroid of the cluster was often problematsometimes
this vector was not actually lexically similar tther utterances
in the cluster and contained many errors, as showiy. 4.

We instead choose the utterance with the highest lef
lexical similarity to the most other utterancedtie cluster, as
this utterance would be the least likely to contaimdom errors.
For each utterance, we compute the cosine sinyilafits term
frequency vector with every other utterance ingame cluster,
and we sum these similarity values. The utteranith the
highest similarity sum is chosen as the typicanattce.
2) Motion Clustering

In the abstraction of motion elements, our prin@sjectives
are (1) to identify common stopping locations ir tocial
space, so that we can discretize our represensatiopeople’s
motion in the joint state vector, and (2) to id&ntiypical
trajectory shapes so that we can estimate peoph®son
targets. We do so by analyzing and clustering tbdan data
to characterize the overall sets of stopping lecetiand motion
trajectories that exist in the data.

Using the approach described by Guéguen [42], \ab/aed
the distribution of trajectories in the data sed aelected 0.55

centroid of each cluster was defined as a “stogpedtion”.
Usually, these points corresponded to significacations such
as the cameras or service counter, so for easelzreation we
will refer to these points by the names shown @ Bi

Trajectory clusters: We clustered the moving segments into
50 trajectory clusters, separately for shopkeepdrcastomer,
using k-medoid clustering based on distances cosdput
between trajectories using dynamic time warping\({DT

The medoid trajectory for each cluster was desaghas its
“typical trajectory”, and the nearest stopped lomat to the
start and end points of that typical trajectory evetentified.
Fig. 7 shows some examples of the trajectory dlsiste
3) Interaction States

We observed that the participants spent the mgjofitheir
time in a few static spatial formations, such dising face-to-
face or standing together at a camera. To caphtisespect of
spatial behavior, we model each interaction asisting of a
series of interaction states characterized by comproxemic

TABLE Il. DIMENSIONS FOR UTTERANCE VECTORS

TF-IDF LSA
Dimension Dimensions Instances
Customer Speech 7289 346 1194
Shopkeeper Speech 9181 353 1233
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Fig. 7. Examples of customer trajectory clustersnifa total of 50 trajectory clusters). The meduoéjectories are highlighted in purple.

formations, such as talking face-to-face or presgra product.
The overall movement of the customer and shopkeegebe
seen as primarily serving as a means for trangitiphetween
these interaction states. Fig. 8 presents examigeaiction state
sequences observed in the training data.

HRI models have been developed for generating gpiate
proxemics behavior in specific social situationscrsuas
initiating conversation [43] or presenting an obj@el]. These
models are useful abstractions, as they enableuiten states
to be used not only to describe target destinatifors
movement, but also to specify proxemics constrants other
behavior at a detailed level for a robot.

In this work, we use three interaction states eeléb existing
HRI models:present objectbased on [44face-to-facebased
on interpersonal distance defined by Hall [45], awvaiting,
inspired by the modeling of socially-appropriate iting
behavior in [46]. Examples of these states are shavFig. 9.

We created rules for identifying each of theserattion
states, based on the distance between the intetaetad their
locations. If both interactants were at stoppingatmns
corresponding to the same camera, the interactate svas
categorized as present object. If they were withtm of each
other but not at a camera, it was modeled as tatace, and if
the shopkeeper was at the service counter whiletktomer
was not, the interaction state was defined as mepiti

In addition, we also identified the current tardet a
particular interaction state. Tltate targefor “present object”
can be either Sony, Panasonic, or Canon, whereastate
targetfor the interaction states “face-to-face” and “tvaj” is
‘none’.

C. Vectorization

When processing time-series sensor data for offt@ieing

or online interaction, these abstractions are dsedreating

vectorized representations of discrete customeshogkeeper
actions, as shown in Fig.10. Firstption analysisis performed

Need based customer O waiting

CF DN | rcetofce

Curious customer [l Present Canon

C__ N Ty | @ Present Sony

Window shopping customer [l Present Panasonic
] s N time D Moving

os 30s 60s 90s 120s

Fig. 8. Examples asequences of interaction states from training fiatthe
3 customer scenarios: curious, need-based, andwistiopping

based on a comparison with typical trajectoriesislthen
possible taiscretize actionshased on detections of movement
and speech. Each customer action is representzjbiny state
vector describing the abstracted state of both particgpanthe
time of that action, and each shopkeeper actioefsesented
by arobot action vector containing the necessary information
for a robot to reproduce that action later.

For all processes presented here, the sensorgdssanipled
at a constant rate of 1 Hz. Except where noted,stimae
techniques were applied to both the recorded trgidiata and
the live data from the online system.

1) Motion Analysis

We characterize a person’s motion using a vectotaboing
three parametergurrent location motion origin andmotion
target, corresponding to stopping locations from theteltisg.

We identify whether a person is moving or stoppsd b
applying the same speed threshold used in tha@effiajectory
analysis (Sec. IV.B.2). For stopped trajectoriesirrent
location is set to the nearest stopping location, amation
origin andmotion targetare “none”.

For moving trajectoriesgurrent locationis “none” and
motion originis set to the most receriirrent location For the
customer, thenotion targetfield must be estimated, although
as we will explain, estimation is unnecessary fbie t
shopkeeper.

Customer motion target: To estimate the customer’'s
motion target, we examine the similarity of the touser's
trajectory to the typical trajectories identified clustering,
similar to the approach used in [47]. We compute th
spatiotemporal distance between the customer'sdi@y and
each of the typical trajectories from the trainidgta using
DTW. The distance calculated for each trajectongidr is then
weighted according to the number of instances &b dhuster,
and probabilities are summed for trajectories teaninate at
the same end location. The motion target is ougnae the
probability of some result is above 50%, usualtgiaed within
2-3 seconds.

Shopkeeper motion targetEstimation of the motion target
through sensor data is unnecessary for the shopke8mce
we always know the robot’s target destination vdaéntainty,
based on the commands sent to the robot, the sbpeke
motion target in the training data should also e flthis
knowledge of the intended motion target. In ordedd so for
the training data, we can determine the shopkegpeotual
motion target at any time by looking ahead in timebserve
their eventual destination, rather than relying estimation
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Fig. 9. Typlcal interaction states: (@aiting: One person is at a design:
waiting area and interactants are not near eadr,oth) Face to face bott
people near and facing each other, but not neabgatt, (c)Present object
both people stopped near an object

Customer lc

h Robot Action
Speech Spatial Spatial State Vector
Vector | State State

T T 00 e ] = I
Speech Vector Spatial State Interaction State Robot Action Elements|
Utterance [l | | Current Location [ | |spatial Formation [I| | | |Speech Cluster [
Keywords [ | |Motion Origin [T | |state Target [ [spatial Formation [
Motion Target ) State Target (]

(a) Features in joint state vector (b) Features in robot action vector
Fig. 10. Quantifying joint state vector and robotion vector

from the sensor data. By doing so, the shopkeepgomtarget
from the training data and from real-time data wllé
consistent.

2) Discretizing Actions

Discrete “customer actions” and “shopkeeper acti@re
defined when one of the participants speaks anblémins
moving to a new location. Speech actions are defatethe
moment the speech recognition result is received, otion
actions are defined at the moment a motion tasgdttermined.
Customer and shopkeeper events are received withisame
1-second interval are classified as two separat@atey so no
event can contain both customer and shopkeepectspee
3) Joint state vector (Input)

When a customer action is detected, the state dofi b
interactants is recorded inant state vectarThis vector will
be used for training the predictor to identify thmeost
appropriate robot action to perform. The featureshie joint
state vector are shown in Fig. 10 (a). It incluthes customer
speech vector (including LSA vectors for both titenance and
keywords, 346 dimensions in total), customer armpkbeper
spatial states (each consisting aidrrent location motion
origin, and motion targeX, and interaction statesgatial
formationandstate target
4) Robot action vector (Output)

When a shopkeeper action is detected, it is repteden a

| Time sequence of events: |

En-

| Training inputs for predictor: ‘

cHoo

=]
[ |

time

Input Training Output

E-
B-[
E-E8

Fig. 11. Example time sequence of customer anpk&eper actions.

utterance is “what does it has 28 different lensekister 1D
292 would be chosen as the representative shopkeppech
cluster, as illustrated in Fig. 4.

Generating robot behaviorAs described in Sec. IV.B.1, a
typical utterance is extracted from each shopkeespeech
cluster, which is expected to contain fewer randorors than
a typical instance of recognized speech. To gemaatobot
speech behavior from a cluster ID, we use thiscglpitterance
as the text to be sent to the robot’s speech ssizthe In the
above example, the chosen robot speech would bes“tire 28
different interchangeable lenses available for thimera”.

Target Interaction State: Recall that the interaction state
described in Sec. IV.B.3 encapsulates the proxdomination
of the two interactants at a given time. We can this
information to generate robot motion by recordihg ttarget

Single shopkeeper action

Train predictor to output “no action”

Merge shopkeeper actions

Qnteraction state” of the shopkeeper.

Definition: If the shopkeeper is not moving at the time the
action is detected, then the shopkeeper’s curmeraction
state is recorded. If the shopkeeper is movingy tive look
ahead in time to determine the shopkeeper's destinas
described in Sec. IV.C.1. We then determine thegét
interaction state” by evaluating the interactantpatial
formation at the time when the shopkeeper arriviesha
destination.

The interaction state is identified in the same wasy
described in Sec. IV.C.3, except that to accomnetiat case

robot action vectar which can be translated later intowhere the shopkeeper is leading the customer anesifirst,

commands for the robot. In our case we are condewith
reproducing only speech and locomotion, so the tralstion
vector contains two properties: speech (consistingspeech
cluste) and interaction statespatial formation and state
targed), as shown in Fig.10 (b)

we classify the target state as “present objectditfier the
customer’'scurrent locationor the customer’motion targetare
the same object as the shopkeepeuisent location
Generating robot behaviorThen, to generate a robot
behavior in the online system we can simply comphe

Robot SpeechThis field contains information to enable therobot’s current location with the location necegsarachieve

robot to reproduce a shopkeeper utterance. Itlispopulated

the target interaction state, and command it to endfv

if the shopkeeper action contains a speech componepecessary. Fawaiting, this target location will be the service

otherwise, it is left blank.

counter; fopresent objectthe target location will be the object

Definition: Directly using the raw text output from speectof interest; and foface-to-facethe target location will not be a

recognition is not appropriate for generating rokpeech,
because often it contains speech recognition erfews this
reason, we record the ID of the shopkeeper spekwttec
containing the detected speech. For example, ifébegnized

fixed location but rather a point in front of thestomer. If the
robot is not already at the target location, we cand the robot
to drive to a point near that location. The pregige position
near the target location is determined by using il
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(Robot)
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Fig. 12.Left: lllustration of the target spatial formati@orresponding to tt
“present object” interaction state. Right: Exampdé¢slynamic path plannir
to achieve the “present object” formation. “X” repentghe projected futui
position of the customer, and “O” represents tHeutated target psition of
the robot in response.

proxemics model associated with the target interadtate.

D. Learning and execution of interactive behaviors

To use machine learning to determine which robbblmrs
should be performed in response to which humamrgtive
examine the discretized actionddentify action pairs, that is,
sequential pairs of customer and shopkeeper agtionthe
training data. For each action pair, a&in a predictor using
the joint state vector and robot action vector egponding to
the customer and shopkeeper actions. Finally,gredictor is
used in the online phase generate robot behaviorsin
response to detected customer actions.

1) Identifying Action Pairs

By examining the time sequence of detected ac{gees Sec.
IV.C.2), we identify correspondences between custamtions
and subsequent shopkeeper actions. However,
interactions are not always cleanly divided intbacresponse
pairs, e.g., when two customer actions or two shepkr
actions occur in a row. Consecutive shopkeepepstare
combined according to a set of rules, and cust@uions that
are not followed by a shopkeeper action are astsaktigith “no
action” for purposes of training the predictor.

Fig. 11 shows an example time sequence of custamer
shopkeeper actions. The first two, C1 and S1 tithte the usual
case of a customer action followed by a shopkeagtgwn, and
these are paired as training inputs and outputhéopredictor.
Customer action C2 is not followed by a shopkeggtion, so
it is paired with “no action”. The third customectian is
followed by two shopkeeper actions, which are thmemged to
produce a single shopkeeper action.

Recall that each robot action is comprised of darabce
(166 possibilities) and a target interaction s(atpossibilities).
After merging shopkeeper actions, we translate ezcthe
shopkeeper actions into a robot action vector,esxribed in
Sec. IV.C.4. The final list of robot action vectdos our data
set contained 467 distinct combinations of utteearamd
interaction state.

2) Modeling Delay

There is a natural delay time between customeorgtand
shopkeeper responses, and if the robot respondsuiokly or
too slowly, it is unnatural. To reproduce the ddleye between

customer actions and responses from the shopkeeper,
calculated the average time delay between custoamer
shopkeeper actions from the training data corredipgrto each
robot action, and we constructed a lookup tablepimgprobot
actions to average delay times.

For most robot actions, such as answering direestipns,
the delay time was usually in the range of 0 -s28&onds. For
some behaviors longer pauses were observed. Fonpéxa
when a customer entered and moved directly to they S
camera while saying nothing, the system predicteat the
robot should approach and offer assistance, aftlay of 17
seconds. If the customer performed another actioimgl this
time, the robot responded to that action. In thésymthe robot
was able to respond to long pauses which occuerggn the
“window-shopping” scenarios.

3) Training the Predictor

Once all action pairs in the training data havenhidentified,
we train a naive Bayesian classifier, using thetjsiate vector
for each customer action as a training input aedstibsequent
robot action vector corresponding to the shopkeapton as
its training class.

The naive-Bayesian classifier is a generative ifieaon
technique, which uses the formula below to classifynstance
that consists of a set of feature-value pairs.

ayg = argmaxP(aj) Hip(fi = Uilaj) @)
ajec

a;, denotes a robot action, afjdenotes a feature in the joint
state vector. The naive-Bayesian classifier piciabat action,
ayg, that maximizes the probability of being classlfi® the
robot action given the valug for each featuref.

Each featur¢; in the joint state vector is multidimensional,

sodiahsisting of a set of terms,. For example, the customer

speech vector has 346 dimensions, whereas thewesspatial
state only has 21 dimensions. Thus, we can retttelassifier
equation to consider the partial matches betweewnatues for
each feature, as in Eq. (2), where the conditipnatbability of
each term of each feature, given a robot aatjpis computed
in the training phase:

v = {tin, tiz) s tim} "
ang = arg{ﬂé‘?”(%) [T:(ITx P(tu appears in fi]a;)) ™ (2)
J

We would like to give higher priority to valuesthme features
that are more discriminative in classifying robatien. Gain
ratio tells us how important a given feature in jbiait state
vector is. Thereforay;, calculated from the gain ratio of each
feature, is added as the weighting factor for {aegifier.

4) Generating Robot Behaviors

During live interaction between a human customet e
robot shopkeeper, the sensor network records th®mer's
motion and speech at one-second intervals.

When a customer action is detected, we query theed
naive Bayesian predictor, passing in the jointestegctor
corresponding to the social state at that time. drldictor will
then output either the ID of one of the 467 rohaitoms, or it
will predict “no action”. If a robot action is spéed, the system
waits for the time specified in the delay tableresponding to
that action, and then commands are sent to the tolmove to
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[Joint state vector]

Customer Speech
Vector

Utterance Vector. LSA vector representing “hello I'm looking focamera that has
interchangeable lenses do you have any?”

Keyword Vector: LSA vector representing “camera, interchangekises”

Customer Spatial
State

Current location: Service Counter
Motion Origin: None
Motion Target: None

Shopkeeper
Spatial State

Current location: Service Counter
Motion Origin: None
Motion Target: None

| Interaction State

Spatial Formation: Face-to-face
State Target:None

=

/.

[Predicted robot action]

-/
L

Robot Speech

Speech Cluster ID:170

(Typical utterance: “over here we have my favonitéch is the Sony NEX 5 which
is a mini SLR and has 28 replaceable lens.”)

Target Interaction
State

Spatial Formation: Present object
State Target: Sony

Fig. 13. Example of predictions in a livinteraction

a destination or speak an utterance.
When the robot action includes an interaction stafte

quality of the robot’s behavior in live interacterBecause we
consider the proposed abstraction technique tohbemain

“present object’or “face-to-facg, the precise target position is contribution which makes it possible to learn iatdive

computed according to that formation’s proxemicsdeio
While in motion, the robot projects the future piasi of the
customer and recalculates a target location aacogrth the
proxemics model every second until it arrives. S@xamples
of this calculation are illustrated in Fig. 12.

In this example, the first target interaction stigtéPresent
Camera 1", shown in Fig. 12 (a). The robot projetite
customer’s destination to be X1, so it computesaryet
destination to point O1l. The next target interactgiate is
“Present Camera 2”. In Fig. 12 (b), the robot figebdjects the
customer to be moving towards X2, so it begins mgvi
towards point O2. However, in Fig. 12 (c), the tooger
chooses to move to a different location than ptedicThe
robot dynamically updates its path to move to pQiat

E. Example of Behavior Execution

behaviors despite high sensor noise, we comparen tw
conditions: (a)proposed using the abstraction techniques
including clustering and interaction states desctiim Sec. IV,
and (b)without-abstractiona similar technique we developed
that does not use our abstraction techniques.

A. Comparison system

We designed thwithout-abstractiorsystem to be similar to
other state-of-the-art data-driven techniques fenegating
interactive robot behaviors. For example, Admonalet[48]
developed a system that matches observed datal#time to
the nearest example from human-human training tdesalect
a robot behavior, following the idea that peoplarte to
communicate by mimicking observed behavior in aegiv
situation.

Thus, we created a modified version of our systdnckvalso

Fig. 13 shows an example of a prediction from & livuses the observed sensor data in real-time to tfisdmost

interaction with a robot. In this example, the ouser
approaching the shopkeeper at the service coundietécted as
a customer action, and the predictor is querieth Wit joint
state vector shown in the figure. The predictedotadction
consists of an utterance with cluster ID 170 paiveéth an
interaction state, “Present Sony”. The recordechyddime
corresponding to “170-Present Sony” action is 2&€onds, so
the system waits for that duration before execuéingaction.
Because the current interaction state is “waitiagt the target
interaction state is “Present Sony”, the robottstaroving to
Sony. A speech command is sent to the robot cantgitie
typical utterance from the selected speech clust@ch in this
case causes the robot to speak, “over here werhgv¥avorite
which is the Sony NEX 5 which is a mini SLR and 285
replaceable lens”.

V. EVALUATION EXPERIMENT
We conducted a comparison experiment to evaluate

similar example from the training data. If our datare not
susceptible to noise, the behavior generated bywitieout-
abstraction system would have represented exactly what a
human shopkeeper had done in a similar situatiome T
differences between theroposed and without-abstraction
systems are described here and summarized in Bable

Speech elementsSpeech is captured and processed using
the same standard text processing techniques indystems.
However, no clustering is performed on the shop&eep
speech in thewithout-abstraction system, so shopkeeper
utterances must be generated directly from the speech
recognition results captured in the training d&{ayword
extraction is also not used in thgthout-abstractionsystem,
because its purpose is to assist with clusteringhopkeeper
speech.

Motion elements: Our proposed technique uses the results
from trajectory clustering to define stopping ldoas and to
tgnticipate a person’s motion target. Fonlitout-abstraction
system, a person’s stopping location is represemjeteir raw
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TABLE Ill. DIFFERENCES BETWEEN PROPOSED SYSTEM AND WITHOYBSTRACTION SYSTEM

Proposed system

Without-abstraction system

Clustering ¢ Cluster shopkeeper speech ¢ No clustering
¢ Cluster motion data
Vectorization ~+  Motion target prediction based on trajectory cluste « Motion target prediction based on mean motion divac
« Abstracted locations « Raw position data
¢ Interaction states used « No interaction states
Predictor « Naive-Bayesian predictor to select an abstractgdrac « Nearest neighbor-predictor to select an instancepmduce

Robot action
generation

Motions generated based on target interaction state
Utterances generated from shopkeeper speech dluste

x,y position, rather than the nearest stopping poinster.
When moving, a person’s motion target is estimé@sed on
their motion direction, rather than using our teghe of
comparison to the trajectory clusters. Finally,sbeof possible
motion targets is defined manually for twéhout-abstraction
system, rather than using clustering results (Winelé five
points: the three cameras, the door, and the secaanter).

To estimate a person’s motion target, the persarésn
motion direction 8,40, 4ir IS calculated over the last 3
seconds, and theotion targets calculated as the y position
of the nearest object to the mean motion directiom their
position in the environment.

motion target = arg min( Gmotiony;, — objy,
:obj, € all objects in environment)  (3)

Feature vector: The stopping locations identified in the
clustering phase are not available in thighout-abstraction
system, so feature vectors include the followirfgd&ures: the
customer’s and shopkeeper’s currenty coordinates, the
customer’s projectedt,y motion target, the shopkeeper’s
actualx, y motion target, and the LSA vector representation
the customer’s speech. Interaction state was chtded in the
feature vector for theithout-abstractiorsystem.

Prediction: The predictor from theroposedsystem cannot
be used in thevithout-abstractionsystem — since shopkeeper
utterances are not clustered, there is no setsafrete robot
actions to be trained. Instead, we created a “seaeighbor
predictor” — whenever a customer action is detedtedlcurrent
raw feature vector is compared to the feature vediom all
customer actions in the training data. The bestcimas
identified, and the subsequent shopkeeper actiom fthe
training data is returned as a robot action. Ralstibns in this
case have two properties: motion target (if movinghd
utterance text (if speaking). A lookup table forlayetime
between the customer and shopkeeper actions wasraiated
in the same way as the proposed system.

For our dataset, the set of customer action vecnsisted
of 1636 entries in 330 dimensions, so a k-d tr&, [as used
to speed up the nearest-neighbor comparisons.

Robot behavior generation Robot behaviors are generated

directly from the specific instance of shopkeepehdvior

output by the nearest-neighbor predictor. For mammthe
robot moves directly towards they position where the
shopkeeper had moved to in the matched instanswaid of
using interaction state to generate the target.speech, the
robot speaks the exact phrase captured by spesmiigon in

the matched instance.

(o]

Motion generated directly from a shopkeeper moii@tance

r Utterances generated directly from a shopkeepercspastance

B. Hypotheses

In the comparison experiment, we made the following
hypotheses about the effects of our abstractiohniqoes
(clustering and modeling of interaction stateshi@proposed
system, compared with théthout-abstractiorsystem:

Speech clusteringClustering of shopkeeper utterances will
produce more correct utterance behaviors in thetrddecause
the act of clustering and our technique for typiadkrance
extraction will reduce the effect of noise in theptured
utterances.

Stopping point clustering: Representing spatial locations
based on abstracted stopping point clusters, rétlaeras raw
positions, will lead to more efficient learning dligh
abstraction. This will also be more robust to semsise, since
the influence of noise is incorporated in the @tisig step.

Trajectory clustering: Estimation of motion target will be
more accurate when similarity to clustered trajeetis used,
compared with raw extrapolation of velocity. Thigdl\ead to
more appropriate responses to customer motion fhemobot.
Interaction states: The modeling of movement in terms of
transitions between long-term-stable interactioatest will
result in more reliable locomotion behaviors theproducing
individual movement events.

Based on these hypotheses, we chose to test tbevifag
predictions for the comparison between greposedsystem
and thewithout-abstractiorsystem:

. Correctness of wording: The robot will produce more
correct wording in th@roposedsystem.

Consistency between speech and movementthe
robot’s speech and movement will be more consistéht
each other in thproposedsystem.

Appropriateness of robot actions: The robot will
respond more appropriately to the customer’s astian
theproposedsystem.

Social-appropriateness: The robot's behaviors will be
more socially-appropriate for its role as the shegger in
theproposedsystem.

Overall evaluation: The overall evaluation of the robot's
behaviors will be better in th@roposedsystem.
Robustness:Theproposedsystem will be more effective
at generating appropriate robot behaviors even when
recognition errors occur.

C. Experiment Setup
1) Participation

A total of 17 paid participants (11 male and 6 fEamaverage
age 34.42, s.d. 13.30) played the role of customethe
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(1) Customerwalks into the shop

Robot greets the customer withi can | help you with anything'at servicecounter

(2) Customer stopsat Canon, and sayges I'm looking for a camera with large memoryrsige”
Robot approaches customer at Canon while sa$jeg we have Canon Rebel XTi | over here this carhas a very large storage memory it can

store about 10000 photos”

(3) Customer: “how much is it?”
Robot: “this is $400”
Customer: “and what about the battery life?”
Robot: “7 hours”

[The robot answers a few more questions about Céngrcolor, weight)]

(4) Customerwalks to Panasonic
Robot follows the customer to Panasonic

(5) Customer: “what is the LCD size?”
Robot: “a 3 inch touch screen”
Customer: “that sounds nice. 1 like it.”

Robot: “also this is very light only weighs 150 grams swcan fit right in your pocket”
[The robot answers a few more questions about Para&.g.color, optical zoom)]

(6) Customer says‘Thank you for your help. | will think about it&nd leaves the shop

Robot returns to the service counter while saying problem”

experiments. All of them were fluent English speak® North
and South Americans, 7 Europeans, 1 Russian).
2) Environment

As in our data collection, participants played eaxhthe
following roles: a need-based customer (3 triads)curious
customer (3 trials), and a window-shopping custof@erials).

The experiment was conducted in the same camena shithe order of the conditions was counterbalancedth@drder
setting used for the data collection, with thregitdl cameras of the trials within each condition was randomized.

displayed in an 8m x 11m experiment space. The sEmgor

network was used for tracking, and
communicated with the robot using an Android phone.
3) Robot Platform

For this experiment, we used Robovie 2, a humarabidt
with a 3-Degree-of-Freedom (DOF) head, two 4-DORsra

As in our data collection, participants were ast@gdretend

the participant® be a first-time customer in the camera shog¥ery trial and

the participants performed scripted interactiongofge the

experiment to become familiar with the Android plon

interface and confirm their understanding of tharnctions.
After the 8 trials in one condition were completede

wheeled base, and a speaker that can output sigebes participant answered a gquestionnaire. The proceduas

utterances.

Robovie is capable of moving at a speed of 0.7 Fgs.its
motion planning, the dynamic window approach (DWxgs
implemented to avoid obstacles [50].

Implicit behaviors were implemented into the robshere
the robot makes small arm and head movements vtiihe,
speaking, and moving [43]. Automatic face-trackaigobot’'s
interaction partner was also implemented, and tbieotr
followed the customer with its gaze during all naiions.

4) Procedure

repeated with the remaining conditiomithout-abstractionor
proposedl. At the end of the experiment, the participanesev
interviewed to gain a deeper understanding of thgimions.
Examples of interactions from the experiment usihg
proposedsystem can be seen in the video attachment.

D. Measurement

1) Questionnaire
The participant rated the following items on a &€ale (1
being very negative and 7 being very positive lier tespective

We compared the robot's performance between twiEMS)in awritten questionnaire:

conditions: proposed and without-abstraction and each °
participant was asked to role-play for 8 trialeach condition.

Correctness of the wording of the robot’s utterance
Consistency of the robot’s speech and movement



Appropriateness of the robot's to
participant’s action
Social appropriateness of the robot’s behaviolitsamle
as the shopkeeper
Overall evaluation
In the experiment, the robot may give an answetht®
customer’s question that makes sense, but mayeoatssarily
be accurate. For example, if the customer asks “thueh is
this camera”, the robot may respond with “$600téas of the
correct answer, “$300". Because knowledge of thesers
could affect the participant’s evaluation of thebaog we
informed participants about any informational esrtive robot
made before they filled out the questionnaire ichezondition.

2) Interaction analysis

response
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theustomers asked in different ways. For example,ouséomer
asked, “this one comes in red, right?”, and anothestomer
asked “what color do you have for this?”, and thisot was able
to answer appropriately by saying “we have red aiher
available” to both customers. Likewise, the robotrectly
gave the weight of the camera in response to “hawhoes
this camera weigh?” and “excuse me is this camesay”

Sometimes the robot responded correctly despiteckpe

recognition errors. The robot gave correct answecgiestions
such as the following (correct phrasing in bracké®dmanda
[um, and uh,] how much does it weigh?”, “I'm sodges this
camera have optimism [optical zoom]?” “How many admat
color is coming? [how many, er, what colors dodas tome
in?]”, “Skewes me [excuse me] what color does asuar [this

For the robustness evaluation, we conducted a le@tai camera] come in?”, “how much does a camel [this erain
action-by-action analysis of the robot's behavigrasking a weigh?”, and “I say in the is it a popular votesg@ie, and uh, is

coder, blind to the experimental conditions, torei® each j; g popular model?]”. Many recognition errors wegerly
gction (speech or movement) made by the particjpﬂql 10 common, such as “scammer” or “camel” for “camerafd
judge whether the robot's response to that actios W«qcp” for “L.CD”, and the system appears to havertesl to

appropriate. The coder was shown examples of aalolepand
unacceptable behavior in order to calibrate expiecs
Examples of unacceptable behavior included ansgedn
question incorrectly, or failing to guide a custeortea camera
when asked to do so. From this evaluation, we tatied
behavior correctnesfor each condition, for each participant.
A separate evaluator examined all of the custorpeech
events in each trial and recorded the number ofecbrand
incorrect speech recognition results. We defind$R

treat these words as synonyms.

Sometimes it failed to respond correctly due toespe
recognition errors. For example, when a customiadascould
you tell me how much this Lumix costs?”, the wotdifix”
was recognized as “LINE X”, and the robot respondgds,
sir.” Then the customer rephrased his questionjlttgou tell
me how much this is?” and the robot answered cthiyrat/hen
a customer repeated or rephrased their questi@nrdbot
usually responded correctly the second time.

correctnessy whether the sentence-level meaning of the ASR The robot's utterances sometimes contained minoreras

result was understandable or not. Though some ASRIts
contained word errors, they were judged as “catrdcthe
utterance itself was still understandable on aeser@-level. For
example, given that the customer said “thanks’atloe ASR
result “thanks a lots” would be considered corredhereas
“insulet” would be considered as incorrect. Furthaealysis of
the speech recognition accuracy can be found idgpeendix.
The ASR correctneswas then compared with thehavior

can be seen in the example in Table 4, althoughesufithese
mistakes sounded phonetically correct. For exantpkerobot
sometimes said “my | help you?” when the customeered
the shop, yet none of the customers noticed theakas

The robot was also able to respond to the cust@meotion
— when a customer entered and immediately apprdatttee
service desk, the robot would greet them immedjatethereas
if they walked to one of the cameras first, it wibuwlften let

correctness to evaluate the robustness of the behaviqhem browse for a while before speaking.

generation technique to recognition noise.

E. Results
1) Observations

When the customer thanked the shopkeeper andtheft,
robot would respond with phrases such as “no probte “you
are welcome” and returned back to the service esuht cases

It was quite fun for us to watch the robot actind’vhen the customer left the shop without talking the

autonomously — since the learned rules created sueresting
variations of behavior, we never knew exactly whatwv the
robot would respond to any situation. Most of tlubat's
behaviors were executed well - the robot was abhadve with

the customer to appropriate locations and answest mo

questions correctly. Although it did make some exrit was
often able to recover and continue the interactidany of the
participants commented that they really enjoyedrteractions.
Table 4 shows an interaction example from the empnt.

If the customer was looking for a particular camieature
(e.g. interchangeable lens), the robot usually respon
correctly, guiding them to a camera with that featand

introducing the camera. The robot also answered t md¥’

guestions about camera features correctly, evengthdhe

shopkeeper ife. a window-shopping customer), the robot

thanked the customer for visiting the shop. Thradigipants

commented that the robot was polite in greeting saying
goodbye.

The robot was usually able to move together with th
customer or follow them to a camera, and two piaditts
responded that they liked the fact that the robtdddved them
to different cameras. Occasionally it misinterpdeteperson’s
motion and moved to the wrong camera, but in swadeg it
usually corrected itself in the following actiofithe customer

d&sked a question about a camera while the robotrmersother
place, it usually moved to the customer’s locatiwhile

swering the question, in order to reconstruct tdrget
interaction state learned during training.
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Fig. 14. Evaluation results of robot behaviors testwconditions .Fi§. Comparison of ASR correctness and robotyieheorrectness.

The use of proxemics models based on the interastimte was significantly higher thaASR correctnes$(1,16)=10.669,
to control the robot’s positioning relative to tbestomer also p=.0054). In thewithout-abstractioncondition, thebehavior
seemed to work effectively. Two participants comtadrthat correctnesswas significantly lower tharASR correctness
the positioning of the robot was very good, andrtitst had a (F(1,16)=30.356, p<.001). Incidentally, no significant
good idea of personal space. difference was found in ASR correctness betweerditions
2) Questionnaire (F(1,16)=.035p=.854).

Fig. 14 shows questionnaire results from the pagits. To These results confirm our hypothesis that behavior
compare each rating between r@posedcondition and the generation in theproposed condition is more robust to
without-abstraction condition, we conducted a repeatedrecognition errors than in theithout-abstractioncondition.

measures ANOVA for each of the five questions. We consider this to be an important result, asgeitimn errors
This analysis found significant differences betwele and sensor noise constitute some of the major enigdls to
conditions for all ratings: “Correctness of wormglin data-driven interaction design.

(F(1,16)=9.660,p=.007), “Consistency of robot's speech and) Qualitative Analysis

motion” (F(1,16)=26.947, p<.001), “Appropriateness of To better understand the nature of our system®peance,

responses”H(1,16)=20.564p<.001), “Social appropriatenesswe investigated the specific causes of behaviooriectness.

in role” (F(1,16)=14.222p=.002), and “Overall evaluation” Thus, of the total 1281 robot behaviors observedthe

(F(1,16)=48.944p<.001). proposedsystem, we analyzed the 201 robot behaviors that
These results support our hypothesis that the gigatit Were judged as incorrect by the coder. In Tablgespresent a

would perceive the overall behavior to be bettethwour dualitative analysis of the errors observed in proposed

proposed system. The results also support our gifeds for SyStém, including the possible causes for sociatippropriate

the correctness of the wording, consistency in rbieot's OPOt behaviors, examples of these errors, and tiezgjuency

speech and motion, appropriateness of responsetheo of occurrence. The results are derived from opatingpand

customer's actions, and the social appropriateagtise robot observation from video data and participant feellbacthe
in its role as the sh,opkeeper evaluation experiment. The possible causes are:

3) Interaction Analvsis Lack of repeatability: Some customer behaviors in the

) ' ysl . . .. human-human interaction were either only observex @r not
The results of the interaction analysis are shawhig. 15. _observed at all in the training data, thus it widficdlt for the

We conducted a repeated-measures ANOVA comparipgyt 6 leam to behave well. Questions such aspeoison

behavior correctnesetween theproposed and without-  pepveen two cameras did not often occur in ounimgi data.
abstraction conditions. The results showedehavior por this reason, we could not collect enough exas train
correctnesso be significantly higher in theroposedcondition  the robot well to answer such questions. The rebatetimes
(F(1,16)=97.507,p<.001). This result further supports ouranswered these questions correctly, but it wasllysupleasant
hypothesis regarding appropriateness of responseshé surprise when it did.
customer’s actions. We believe that the performance of the systemimifirove
As some of the appropriateness judgments are sidgiewe  if more data can be collected, and would help ti®t answer
confirmed the consistency of the coder’s evaluatioypasking questions such as comparison between two cameras.
a second coder to independently rate 10% of theesam Error in ASR: Certain ASR errors would trigger the robot
interactions. Their results were compared, andree@s Kappa to behave inappropriately, e.g. when an entireesee gets
value of 0.76 was calculated, indicating good imtear Misrecognized (i.e. “it's expensive” as “sixpencef)when a
reliability, so we consider the coder's ratings kmve Word about the camera feature gets misrecognized “fies
consistency. Next, we compareehavior correctnesandASR how many colors does this camera come in” as “hcamyn
correctnessfor each condition with a repeated-measureg@lories does this camera come in”).
ANOVA. In the proposedcondition, thebehavior correctness
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TABLE V. COMMON CAUSES FOR BEHAVIOR INCORRECTNESS OF THE ROBOT IN EFPROPOSEDSYSTEM

Causes Examples Freq.

Lack of repeatability e« A customer compares current camera with anotheeafe.g. "so is this one better than the Sony cate 54

Error in ASR ¢ Misrecognized customer’s utterance (e.g. “yes h@myrcolors does this camera come in” misrecograzethow many a4
calories does this camera come

Lack of history « A customer already indicated wanting to be lefhaloyet Robovie sometimes offered to help sevamasin a row 23

representation « A customer says “that’s great”, and Robovie repeaatatterance that had already been said previously

Errpr inl motion targete  Robovie mistakenly estimates the customer to barigahe shop, when the customer is not plannirigdee yet 17

estimation

Error in “farewell” + When a customer leaves the shop, the robot retarsesrvice counter without saying farewell (i.eedmot say “thank you 10

behavior for coming”)

Ambiguous « Robovie addresses the customer with “yes sir” 9

shopkeeper behavior

Embodiment ¢ A customer asks the robot a question from acrassabm (in the training data, most customers §iastl “excuse me” to 7
the human shopkeeper in order to call them ovdoréeasking a product-related question)

Error in timing « A customer says something new before waiting to Redovie’s response 7

Unexpected customer A customer asks about something outside the seeseope, to which the robot has not learned a respo 6

behavior

Miscommunication ¢ A customer asks for clarification, such as “Can yepeat that please?” or “did you say 10000 photos” 5

Missing information ¢ A customer asks “Yes how much is this camera dwenet?” while pointing to or gazing to another caaner 4

Error due to speech ¢ Robovie responds with “yeah mazzy s ball night B&r5” 1

clustering

Other ¢ The robot failed to respond due to hardware oratp@ral errors (e.g.. network failures, customegéts to press button on

smartphone after speaking)

Since our system was trained with real ASR datayas
usually robust to ASR errors. However, some ASRrerwere
more frequent than others. For example, ASR migeized
“color” as “kara” on several occasions, but onlysrecognized
“color” as “calories” on one occasion. In this casden the
customer asked about the camera’s color, the rolmtld
respond correctly to the misrecognized word “kalait, not to
the misrecognized word “calories”.

Lack of history representation The lack of interaction
history modeling sometimes caused Robovie to repiemelf.
Sometimes, when a window-shopping customer askbd teft
alone, Robovie would respond with “no problem” aodtinue
letting the customer browse, but since the systentained no
long-term history, Robovie sometimes offered tophsdveral
times in a row. Though such cases were observed guiew
times (i.e. 15 times), participants did not seeidanind at all.
In fact, one participant thought the robot was eirvery eager
shopkeeper.

In another example illustrating lack of history regentation,
a customer asked “What about the Canon camerafaftes
asking about the color of the Sony camera. Robowigd not
answer correctly, since such question is implicidferring to
the previous question. This exchange is quite cmafgld but
only happened once in the evaluation.

the customer’s motion origin is more important titarmotion
target.

Error in “farewell” behavior : In most interactions, the
robot acknowledged the customer leaving the shap, &y
saying, “thank you for coming.” However, in a small
percentage of cases, the robot said nothing wheeuktomer
left. We speculate that such behavior was leaom fa variety
of situations where the human shopkeeper did ndbally
acknowledge the customer, e.g., the shopkeeperahmaddy
said goodbye, but the customer continued to broaveend
before leaving; the shopkeeper smiled or noddddedeaving
customer instead of a verbal farewell; or the slkeepler
recognized that a window-shopping customer wartdduktleft
alone and thus did not verbally acknowledge thevihen

customer. As a result, sometimes the robot would no

acknowledge or say anything to a leaving custoimarwould
just return to the service counter.

Ambiguous shopkeeper behaviar There were few
instances that it was ambiguous whether the robloaior was
actually right. For example, some human shopkeewerdd
use phrases like “yes sir”. Since we did not trdekgender of
the customer, the robot would learn such phrasespitt
whether the customer was female or male.

Embodiment: An interesting phenomenon is that customers

Error in motion target estimation: Sometimes the system sometimes acted differently towards the robot ttreey did

would misrecognize the motion target of the custoriiéhen
the robot misrecognized the customer’s motion taegethe
door (i.e. leaving the shop), the robot might sdnahk you for
coming” even when the customer was not plannirgdoe the
shop yet. Sometimes when the robot misinterpretesl
customer’s motion, it would move to the wrong camdut in
such cases it usually corrected itself in the feitgy action.
Sometimes it may be difficult for the robot to esdte the
customer’s motion target. For example, as the custenters
the shop, it is unclear whether the customer isgod Canon
or to the service counter. However, regardless ludther the
robot is able to correctly estimate the custommdgion target,
it would still greet the customer appropriatelycarit learned

towards the human shopkeeper. In the training deten the
human shopkeeper was waiting by the service couttter
customer would usually say “excuse me” first tol dake
shopkeeper over before asking a question. In tla¢uation,
tcustomers often asked a question to the robot ttireeven
from across the room (perhaps because they weaisgeo it
through the smartphone). These combinations ofadpsthte
and utterance were not observed
interaction data, so the robot sometimes did neags respond
in an acceptable way. For example, it often apgredcthe
customer, but did not answer the respective questio

Error in timing : Turn-taking is a notoriously difficult
problem, and sometimes the customer and robot vapddk at

in the human-human



the same time. Once a customer action (utterascitected,
the robot may be triggered to take an action. éf tistomer
speaks again without waiting for the robot to regfyahe robot
sometimes interrupts the customer while he is spgak

Unexpected customer behaviar A customer may ask a
question outside the scenario scope, such as ardetiiat has
not been defined for that camera. Since there artraining
examples to handle these questions, the classifield usually
choose the most talked-about feature of that carasr#he
output behavior for the robot. In our scenario, ribleot usually
responded with the price of the camera if the austoasked
about a non-existent feature.

Miscommunication: There were some situations where &

customer asked the robot to repeat its utteranmmktlae robot
was unable to do so. Most of the time, the robatksp
understandable and correct utterances, but sonenceis just
wanted a confirmation. In some instances, Robovaulay
synthesize its speech in a very robotic way (il€000 photos”
synthesized as “one zero zero zero zero photosy,smme
customers wanted the robot to repeat for clarificat a
situation for which no examples existed in theriray data.
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containing errors.

By learning from natural human behaviors, the rdbatnt
lifelike variation in its behaviors. Explicitly pgsamming
multiple phrasings of utterances requires time effidrt, but
our system implicitly learned to use a variety gh@ymous
phrases, such as “yes it's very good in low lightd “and if
you like to shoot in the dark this is really good/hich can help
keep interactions interesting and lifelike.

Another merit is that our system naturally learneden
speech was location-specific or generalizable tfferdint
locations. For example, “Show me a camera with goutital
oom” has the same meaning regardless of whesesfiaken,
whereas “How much does this cost?” is highly depehdpon
the current interaction state target, as each @iner different
price. The robot was able to derive probabilisticilow to
handle these situations correctly.

The robot learned to mimic the interaction styldsthe
shopkeepers, such as the casual nature of theéclsp&Ve
noticed one human shopkeeper in our training ictenas
spoke quite casuallg(g.“okay find me if you want”) and used

Missing information: Sometimes the customer may stand atlang words€.g “600 bucks”) at times. As a result, the robot

one camera and ask about a feature of a diffeemera (e.g.
“what about the price of that camera?”), while gazior
pointing to the referred camera. Since the robesdmt know
where “that” is, it would often answer with the q&iof the
camera at the customer’s current location. If ldissensing of
gaze direction and pointing gestures were availabheight be

possible to address this problem by representingt thy

multimodal information in the feature vector.

Error due to speech clustering Some clusters were too
noisy to produce sensible speech. For example spieech
cluster ID 179 contains 3 shopkeeper utteranceihadre all
very dissimilar from each other and nonsensicalaAssult of
this bad cluster, the typical utterance chosen‘weash Mazzy
s ball night hours 515”. However, such instanceseware, and
we only found one instance where such a clusterclasen.

learned to mimic that casual speech for some ictiers.

Likewise, we asked the human shopkeeper to appesyrdnd
only approach the customer when appropriate. Assalt; the
robot adapted to a more passive interaction behawod

waited at the service counter when the customesredtthe
shop. It could be interesting to explore furtherwhthe

ifferences in personality, interaction style, atider personal
traits can be modeled and captured from data.

B. Validation of the Model

We believe evaluating how appropriate the robotsoa
was (i.e. behavior correctne3swas more important than
evaluating how accurately the model was able toctbxa
replicate a specific example from the training data
Nevertheless, as a reference to understandingatiueenof the

Other: Sometimes the robot may fail to respondystem, we evaluated the accuracy of our predigitr a 10-

appropriately or not respond at all due to errorariy of these

fold cross-validation, in which the model predictadrobot

problems: network connectivity between Google Sheegction vector out of 467 possible actions from trening

Recognition engine and our system, hardware, sodtlwags,
or the participant forgets to press the button len Android
phone to signal the robot that they started orpdgalking.

VI. DISCUSSION

A. Contribution

In this study, we showed a proof of concept thaueely
data-driven approach can be used to
interactive behaviors with a robot based on exarhpi@an-
human interactions. We demonstrated that by cdtlgct
interaction data including natural variation in ranrbehaviors
and typical recognition errors, the clusteringra participants’
motion and speech, enabled the robot to resporadriatural
way to such variations. We saw the robot respomptcgpiately
when people with different speech styles or accemsacted
with the robot. This could be an advantage of @mreach over
grammar-based speech systems, which would havieudtif
extracting the meaning from speech

recognition lresu

examples, and the predicted robot vectors were aospwith
the actual state vectors of the shopkeeper acfimm the
training data. The average accuracy was 26.0%.

Even though the predictor indicates a low accuraayften
predicts socially-appropriate behaviors. One redsotthis is
that, as a result from clustering, similar shoplegpactions
can be clustered into different groups even whex ttave the
same meaning or are interchangeable. For exantygpkseper

reproduce 1S0Gaayiors at the Panasonic camera saying “5X dptmam”

and “it has 5 times optical zoom” had the same nimgarbut
they were respectively clustered into cluster I3 28d cluster
ID 183. When a customer asked “how much opticahzdoes
this have” the predictor would output 253, whilewstomer
asking “can you tell me about the optical zoom?2&dicted
cluster 183, even though either cluster would loeraect and
socially-appropriate response to either question.

C. Assumptions

There are a number of assumptions implicit in oratesm
design. For example, we assumed that this is aoormie



interaction where each customer action is folloaationally)
by a shopkeeper’s action. We also specified somanpeters
for our scenario (i.e. number of speech clustarsation of
products, number of discretized states), whichrezeded to
tune machine-learning techniques. These problerasnat
unique to our scenario, as thresholds must be ohése
clustering to work in any problem space, and adinumber of
states must be specified to discretize continuensa data.
We have not yet discovered a good mechanism foosihg
these parameters in an automated way for our tqahni

We used spatial formations to define ‘interactitates’ for
our scenario. We believe the concept of spatiah&tion is
generalizable, and can be applied to other donzsinveell. The
spatial formations we used are common proxemiasdtions
that characterize the relative positioning betwekffierent
entities, which have also been adapted into exjstiRI
models.

D. Generalizability and Scalability

We believe that this data-driven approach is capatil
covering a wide domain of tasks. We can expecteehnique
to work well with domains that share similar chaesistics
with ours, i.e. where a limited number of typicedpeatable
interactions can be anticipated between the seprmgder and
the visitor. For example, a museum guide moves rardo
different exhibits and answers a visitor's questi@bout an
exhibit; or an information booth clerk answers #tisitor’s
questions about a department store. For other sosnaéhere
interaction is multimodal and speech or spatialadat not
sufficient, we may need to adapt the system taiphedata from
different modalities. For example, we can
incorporating skeleton tracking data from a Kingetsor into
our system to train an exercise coach robot.

Our current approach was demonstrated to work foela
scenario with a limited number of concepts, whidah lyelieve
could be scaled up to some degree with more dagamount
of training data is dependent on the number ofadehaviors
that need to be reproduced, the variability of tustomer
actions that trigger those behaviors, and the bidilia of
sensing. Hence, the training effort scales lineavith the
number of the behaviors to be learned, such as Wieemumber
of cameras on display increases.

The one-step lookahead approach we use might beienf
for scenarios with highly repeatable interactiomat tfocus on
simple questions and answers, such as an informbatioth
robot or a museum guide, but for more involvedritéons it
will inevitably become necessary to structure iatéons in a
more complex way. Extending our current systemntduide
interaction history would seem to be an importamtsideration
for future work. Modeling and remembering differattributes
of a person may also be important in an interagiiociuding
everything from name, age, and gender (the robcasionally
said “thank you, sir’, to female participants) tgndmic
variables like emotional and psychological statggrdion
target, and goals. In some cases it might be serfficimply to
add these states to the joint state vector to imgpvediction,
but in many cases it will be important to introduesv behavior
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models, for example, treating the occurrence @fragn’s name
in speech data in a special way, in order to enable complex
interactive behavior.

E. Tradeoff between Variation and Robustness

There is an inherent trade-off between the vamatib the
shopkeeper responses and the robustness to seos@ n
afforded by clustering similar behaviors. Thatdhposing a
large number of robot action clusters will leadrtore variation
in its behaviors, but will increase the likelihoad noise
corrupting those behaviors. With our data, we fothet 166
clusters preserved a fair amount of variation & shopkeeper
utterances, while providing reasonable robustressise. For
example, multiple clusters with the same generahmimg
represent different ways the robot can explain ¢hkor of
Canon (e.g. “well the also comes in grey red amavbrso you
have a choice of color is this” and “intense greg and brown
colors”). In high-noise situations, it might madense to reduce
the number of clusters in order to make it easierdject
utterances corrupted by noise. In that case som#éesde
variations would be lost, and the robot might obéy able to
describe the camera’s color in one way. Convefsielya
situation where a greater amount of training dada available,
we could choose a higher number of clusters, tlamucing
even more natural variations of the spoken utteramdile still
rejecting noise.

It could also be possible to consider sampling ntloa@ one
typical utterance from a cluster to use for robmtexh. This
could lead to a greater degree of lifelike variatio the robot’s
speech, but it would also increase the risk of AS&Rors
corrupting the spoken utterances.

imaging  Behavior Modeling in HRI

The current study used existing HRI proxemics m®dlel
order to create generalizable behavior templatasabuld be
recognized and reproduced,
formation. These models provide generalizable #irat
elements which can be helpful in learning compédat
interactive behaviors. It would be useful to incmgte similar
HRI models describing aspects of behavior sucteatuge and
gaze. During the interaction, some of the participg@ointed to
another camera, and says “what about that one®thbuobot
was not sure which camera the participants werrnaf to.
Some participants also commented that when thet robs
trying to guide them, they were not sure wherertimt was
moving to at first. By incorporating pointing anézg HRI
models, the robot can better resolve ambiguitiés $2].

Models of the structure of conversation would dsaiseful
tools for extending this work into more complex dons.
Some work has explored the use of generic dialpgtterns in
HRI [53, 54], and it is plausible that some kindtemplates
could be used to help structure data-driven HRbeeslly if
utterances could be analyzed semantically. It walébh be
valuable to explore ways of incorporating modelsiofi-taking
[55, 56], and models governing gaze cues and ictiera
distance for multiparty interaction [57, 58].

G. Embodiment of the robot
One question to be considered in this work is hasll the

such as the preserdtobje



translation of experience from human-human to hunohot
interaction can be achieved, given that the rabetibodied as
a robot, rather than a human. After all, one caugue that
learning to be a human is not necessarily the srearning
to be a robot. Regarding this point, we did observew cases
where the human-robot interaction differed in sajualitative
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TABLE VI. WORDACCURACY AND UTTERANCEACCURACY

Data Collection Evaluation
Customer Shopkeeper Customer
(119 utterances)123 utterances)461 utterances)
Word Accuracy 79.81 % 76.62 % 87.31%
Utterance Accuracy 37.82 % 30.89 % 64.43 %

ways from human-human interaction. For example, or@ecifying Spatial formations. Although the intéiaic scenario

participant talked to the robot in keywords ratthemn sentences, We used was somewhat simple, we have suggested many

as if it were a search engine. Some people seemtedat the

robot like a machine and never made eye contabtitvibeveral

participants asked the robot to repeat itself wherspeech
synthesis was hard to understand. These differamsetted in

situations that differed slightly from the trainidgta — e.g., the
humans never had difficulty pronouncing their sjpeeso the

system never learned how to repeat and clarifgistants.

In most cases, even when differences were obsesuel,as
people not making eye contact with the robot, iffence did
not cause any communication problems. The onlypeailem
we observed regarding the dialog flow was the rebailure
to repeat its utterances when asked. We believeifgpeases
like these are due to a few known issues, e.g.doality speech
synthesis or speech recognition errors. Such problare
limited and can be expected to decrease as theiatesb
technologies improve. A possible way to
miscommunication such as a clarification request aas
extension to our current system could be to enctiue
customer’s clarification request to a special bérapattern.
Without changing other parts of system, this spdmdavior
pattern could trigger the robot to repeat its prasi utterance
when it detects the customer asks for clarificatiile it is

directions in which this work could be extendedapture more
complex elements of interactions, and we believayrad the
techniques for interpreting sensor data, applyindgRl H
proxemics models, and reproducing human behaviasdbot
despite large amounts of sensor noise will be egble to other
scenarios. This study highlights the importancebehavior
modeling in HRI to provide structures useful ineirgreting
collected sensor data and generating robot betgvior
Perhaps most importantly, the scalability of thipraach
gives it the potential to transform the way sodighavior
design is conducted in HRI. Once passive collectan
interaction data becomes practical, even a sirglsa network
installation could provide enormous amounts of exam
interaction data over time, an invaluable resouime the
collection and modeling of social behavior. We b&eadi that

handlavith today's trends towards big-data systems andudl

robotics, techniques like this will become essémntiethods for
generating robot behaviors in the future.

APPENDIX

To complement our evaluation of ASR correctnessalse
evaluated the output quality of the ASR system thase

important to keep such differences in mind, we és@ithis common metrics of word and utterance accuracy. \s&du

work has demonstrated that the use of human-humarteasurements of accuracy rather than the errgrinadeder to

interactions holds great potential as a sourcegierating enable easier comparisons with our other metrieSR

realistic social behaviors in robots. correctnessand behavior correctnessWord Accuracy is
defined as

CONCLUSION S+D+1

VL. Word Accuracy = 1 — (3)
We have presented a fully-autonomous method thatled \here S is the number of incorrect words substituieis the
a robot to reproduce socially interactive behagolely from  nymber of words deleted, | is the number of extrards

examples of human-human interactions. Both behavigiserted, and N is the number of words in the @branscript.
contents and execution logic are derived directynfobserved ytterance Accuracy is defined as
Ne

data captured by a sensor network. We believeigHise first Utterance Accuracy = 1 — e )
work in the field of social robotics to addresssthiifficult Nt
problem. As such, our focus was not on any paeticelement whereN, is the number of utterances containing any eraads
of the system, but rather on demonstrating thecéffeness of Nr is the total number of utterances.
our proposed system as a whole. Our evaluation stieat the ~ The results are shown in Table 6. We speculateeason
robot’s behavior using ousroposedsystem was rated more Why customer’s utterance accuracy was much highengl
highly in a variety of measures than a versiorhefdystem that €valuation than during data collection is becausstomer
did not use clustering or interaction states. Farrtiore, the Participants spoke much more clearly to the robantto the
proposed system showed robustness to sensor aofseying human shopkeeper.
an 84.8% behavior correctness rate despite a speeapnition
accuracy rate of only 76.8%. ACKNOWLEDGMENT
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