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Motivation

Interaction Designer

Pre-defined Intents and factual knowledge base

Current dialog systems often require large-scale domain-specific corpora as training inputs, yet it
is difficult to collect domain-specific data to bootstrap and prototype conversational agents. Utterance Collection Phase
To facilitate this, a systematic process for collecting both user and agent utterances is necessary. e e
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We present a workflow to assist the process of collecting data, with these objectives in mind: : ves l
Quality Control Phase
* How do we measure the quality of training data during the data collection phase? | Machine-assisted filtering | | | Human-assisted 5
Our framework alternates between humans-in-the-loop annotation and machine learning | N ““""'i“‘*"'b"."“‘
to identify when sufficient data have been collected ; pattern matching || omeveby crowe judsment |
« How do we efficiently collect data while maintaining data quality? i T o T
Our framework combines both crowdsourced ratings and machine-learning techniques to .m,:ﬁi:;
remove noisy data 1 ___________________________ |
Crowd-rated Fine tuning by domain expert E St onnas
interaction style Domain expert edits or rejects utterances! utterances

* How can we use crowdworkers to generate different interaction styles for the agent?
Our framework allows crowdworkers to generate and rate agent utterances for the purpose
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of training a dialog agent to interact using different interaction styles : T — o| Chathetiraining
shis utterance (o weand more approgriate? Azent
Style selection tegrances
Dataset
* Scenario: Customer support (Q&A) for a real estate agent.
, PP (Q&A) 5 Phase- Customer Utterances Agent Utterances
* Intents: 25 intents Data Collection Ph 21692 3480
. . . . dla Loliection daSe
 Examples: which neighborhood the agent covers, neighborhood safety, services the agent
orovides Quality Control Phase 16410 2943
* Highly noisy customer and agent utterances (e.g out-of-scope, not English, nonsensical words) Fine Tuning Phase 1667
Training data quality metrics
Stopping Criterion 1 (Pairwise semantic similarity): Stopping Criterion 2 (Connected component clustering):  Stopping Criterion 3 (Intent classification):
Measure the proportion of utterance pairs within an Connected components builds the paths between any  Train an intent classifier and evaluate the accuracy of
intent which surpasses a threshold level of pairwise existing subgraphs and a single vertex to eventually reach a  each intent. We stop collecting example utterances
similarity, and use this as a stopping criterion. final stable graph in which any vertex belongs to one of many  when the accuracy of an intent is above a threshold.
] components. Stop when the ratio of utterances in a main
1'0 | —e- =07 cluster has surpassed a threshold. Accuracy of Intent Classifier:
| =w- >=0.75 Comparison between multiple intents
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Utterance Batch Batch (index start from 0) Batch (index start from 0)
Result
Offline evaluation: Even with the same number of customer training examples, an intent Agent data evaluation (Ongoing):
classifier achieved better performance from training data collected from the quality  Developed 3 different versions of the agent trained with data from the data
control phase as compared to data collection phase. collection phase, quality control phase, and fine tuning phase.
Phase % of training # of test Accuracy Precision  Recall | Fl-score . We hyp.othe5|ze the agent tralne.d with the data from the fine tuning phase
examples/intent examples/intent will achieve the best agent behavior overall.
Data Collection
bh 560 60 80.9% 81.6% 80.5% 30.6% _
ase Is the apartment spacious enough?
uality Control
Q Y 560 60 89.5% 88.8% 88.4% 88.4% )
Phase It depends on the size of the property. Currently, we
have an available apartment that is 650 square feet.
Accuracy

87.67%

Average Accuracy
o (By intent) s the area safe?

81.00%

When compared with other major areas,
we have a very safe and peaceful place

Accuracy
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