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ABSTRACT 
This paper presents a computational model for side-by-side 
walking for human-robot interaction (HRI). In this work we 
address the importance of future motion utility (motion 
anticipation) of the two walking partners.  
Previous studies only considered a robot moving alongside a 
person without collisions with simple velocity-based predictions. 
In contrast, our proposed model includes two major 
considerations. First, it considers the current goal, modeling side-
by-side walking, as a process of moving towards a goal while 
maintaining a relative position with the partner. Second, it takes 
the partner's utility into consideration; it models side-by-side 
walking as a phenomenon where two agents maximize mutual 
utilities rather than only considering a single agent utility. The 
model is constructed and validated with a set of trajectories from 
pairs of people recorded in side-by-side walking. Finally, our 
proposed model was tested in an autonomous robot walking side-
by-side with participants and demonstrated to be effective. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfaces - 
Interaction styles; I.2.9 [Artificial Intelligence]: Robotics  

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Human-robot interaction, side-by-side walking, path planning.  

1. INTRODUCTION 
Previous studies revealed a number of scenarios where mobile 
robots can serve walking people. For example, they have been 
used to guide people walking together while talking [7, 20]. 
Robots have also escorted groups of people as in [4]. When 
walking together, it is known that people tend to walk on a side-
by-side formation  [3], however, this knowledge was not used in 
the above studies. The importance of side-by-side walking for 
HRI is discussed in [19]. 

How can we enable a robot to walk with a person in a side-by-side 
formation? On the surface, it seems quite simple to produce a 
side-by-side walking situation; all that is needed is to let the robot 
go along the target person. But is this really so simple? 

We found that it was not that simple. Figure 1 (b) shows a scene 
from one of our experiments illustrating the difficulty with such a 
simple assumption. In this situation, the person was stuck between 
the robot and an obstacle. This awkward situation happened 
because the robot simply tried to be aside her but was not aware 
of the situation that her front was blocked; from the person’s 
perspective, she kept distance with the robot for safety or social 
reasons, and she did not tried to go close to the robot until her 
path was blocked. On the other hand, when the robot walks in a 
cooperative way, the robot is aware of the obstacle in front of the 
person and opens space while keeping distance (Figure 1 (a)), and 
they successfully walk in side-by-side formation.  

 
(a) Side-by-side walking model    (b) A simple model to stay aside 

Figure 1.  People walking side-by-side with a mobile robot. 

To create this model, we first observed how people walk with 
other people in a narrow environment that includes corners and 
obstacles. From these data we formulated a model for computing 
the utilities of future positions and used it to project the expected 
utility into the future for motion planning. The model was then 
implemented into a robot and experimentally evaluated. 

2. RELATED WORKS 
2.1 Human Science for Spatial Formation 
Many studies have been conducted related to personal space and 
social distance. Hall considered the concept of proximity [9]. 
Spatial formation during conversation has been studied in [12]. In 
contrast, relatively only few studies have been conducted for 
spatial formation while walking. When there are only two people 
walking together, it is observed that people mostly walked side-
by-side formation unless it is severely crowded; when three or 
more people are walking, they start to form more complex 
formations, such as "V" shapes and side-by-side formations  [3]. 

In pedestrian modeling research, computational models of human 
walking behaviors have been developed. A social force model 
[10] simplifies people's computation as a combination of attractive 
force toward the goal and repulsive force toward nearby 
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pedestrians. Moreover, recent studies have started to explore a 
model for group behavior, adding attraction force toward either 
the group’s gravity center [17] or the positions of other members 
[28]. Predictions of future states are considered crucial for 
reproducing  human walking behaviors [29]. 

2.2 Walking with a Robot  
Spatial formation has been a focused topic in HRI for the last 
decade. Social distances with robots were observed and analyzed 
[8, 26] and reproduced in HRI [22]. Spatial formation during 
conversations have been replicated in HRI, too, including 
Kendon's concept of F-formation [14]. 

However, the above works mainly address static situations where 
people and robots interact while standing, and a few address 
human-robot spatial interaction for dynamic situations. Gockley et 
al. is one exception whose work describes a human-like way for a 
robot to follow a person [6]. There is a simulation study about a 
formation for shepherding a group of people [4]. Different from 
these engineering works, since side-by-side walk is very dynamic, 
we replicate a human computational model, which is the unique 
point of our study. 

Kobayashi et al. took an engineering approach to implement side-
by-side walking for a wheelchair robot. In addition to letting the 
robot go to the side position as a default, their robot wheelchair 
followed a caregiver when an obstacle was detected and made it 
stop when a caregiver stopped so that he can support tasks such as 
opening a door [13]. Prassler et. al. proposed an approach to 
coordinate the motion of a robotic wheelchair in a railway station 
moving side by side with the person [21] where they extrapolate 
the partner’s velocity based on the past discreet trajectories. In 
these two works, contrary to our model, the prediction model only 
considers the linear extrapolation of velocity and does not use 
environmental characteristics. 

2.3 Perspective Taking and Anticipation 
The literature reported the importance of considering the partner's 
perspective for a robot that interacts with a human partner. A 
robot must understand the partner’s perspective and act based on 
an estimate of the partner's view. For instance, in deictic 
interaction, a scene perceived by one agent does not necessarily 
resemble the partner's due to different viewpoints. Thus, 
implementing a perspective-taking capability in a robot improves 
efficiency[1, 25]. Further, beyond perception, anticipatory action 
was found to be effective in a joint work scenario [11]. We 
consider important to develop a robot that perceives situations in a 
similar way as humans and produces actions to improve the 
partner's future utility. In this work we study a side-by-side 
walking phenomenon built on the success of previous works that 
stressed the importance of perspective taking and anticipation. 

3. SIDE BY SIDE WALKING MODEL 
We propose a computational model that reproduces two-person 
side-by-side walking even when there are corners and obstacles in 
a narrow corridor. We took an analytical approach to find a 
computational model that explains human side-by-side walking. 
We collected trajectory data of people walking side-by-side and 
created a utility model that describes a walking motion that fits 
the data. Finally, we projected this utility model to predict 
people’s walking behavior in the near future, which is a necessary 
step for planning robot motion. The proposed model uses a utility 
function to approximate the trajectory of a walking partner and 
outputs a trajectory similar to the one followed by a human when 
walking with a partner, we do not imply that humans use this 
exact model when walking together. 

3.1 Data Collection  
3.1.1 Tracking infrastructure 
Human's trajectories while walking were measured using a laser-
based human tracker. We used a network of 9 Hokuyo Top-URG 
laser range finders with a nominal detection range of 30 m. Each 
sensor was mounted at the top of a pole at a height of 83 cm. For 
this configuration, the sensors were set to scan an angular area of 
180° at a resolution of 0.25°, at 40 Hz. The sensor poles were 
placed around the perimeter of the environment to track the 
positions of people. Range data was stored and analyzed offline to 
compute participant trajectories using the particle filter tracking 
algorithm presented in [5].  

3.1.2 Procedure 
We collected side-by-side walking trajectories of two people in a 
hallway environment. Fifteen pairs of participants without any 
knowledge of our research were paid for their participation. We 
asked each pair of participants to walk together from a start to a 
goal. For each pair, we collected 34 walking sessions by changing 
the obstacle positions (see Figure 2. ). In total, 510 sets of side-by-
side walking trajectories were collected. Each walking experiment 
lasted approximately 18 seconds. The participants walked in a 
side-by-side formation, except when avoiding obstacles or passing 
through narrow spaces. Since the trajectories were measured 
every 30 ms, we collected 238000 time frames of data. The first 
and last two seconds of each log were discarded to avoid frames 
where participants started or stopped walking. 

 
Figure 2.  Map of the hallway (16m x 13.5m) where two people 

walked together from a start to a goal locations.  

3.2 Modeling 
3.2.1 Assumption 
We believe that humans walk together while taking mutual 
decisions about their next motion. In this case, a person 
anticipates the partner’s next motion and incorporates it in the 
planning of his own. Our assumption is that when people walk, 
they share information about their destination considering that 
subgoal-based path planning is common in human navigation [16]. 
Hence, we propose a model for side-by-side walking based on 
utility function and planning with anticipation. 

3.2.2 Utility function for Walking Side by Side 
We considered several parameters to compute the goodness of 
people’s next motion. We included these parameters in a utility 
function and are briefly detailed below and illustrated in Figure 3. 

Social relative distance (fRౚ): According to proxemics studies [9], 
people stay within a certain relative distance to the partner. 

Relative angle (fR౗): When walking together, people tend to walk 
in the same direction. This utility refers to the relative angle 
between the trajectories of the walking partners. 
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Relative velocity (fR౬): Pairs of people coordinate their relative 
velocity, which is zero or close to zero. Hence, this utility 
contributes for having people walking at similar velocities. 

Distance to obstacle ( fO ): People prefer to walk away from 
obstacles. Positions far away from obstacles have more utility 
than positions close to obstacles (Eq. 1). 

Sub-goal (fS): While coordinating the position and motion toward 
the partner, the purpose of the walk is to arrive at the destination. 
Thus, one prefers to keep facing to the destination. This is 
computed as an angle between the next point and the subgoal.  

Velocity ( fM౬ ): People have their own individual preference 
concerning walking velocity, referred to as their preferred velocity 
[10]. Thus, walking at a different speed than their preferred 
velocity is less comfortable. This utility differs from relative 
velocity in that it does not take into consideration the partner. 

Angular velocity (fM౭): People generally walk in straight lines or 
paths. This utility represents such a characteristic in which straight 
trajectories have more utility than non-straight trajectories. 

Acceleration ( fM౗ ): When walking one minimizes energy 
consumption, thus, one minimizes the changes of speed. 

 
Figure 3.  Utility function parameters. Illustrated parameters 

correspond to the agent’s point of view. 

Regarding the functions used in the utility computation, we 
modeled the distance to obstacle utility function as a step 
function (Eq. 1). People feel comfortable if they are far from 
obstacles (walls), but when they approach them, their desire to 
avoid obstacles rapidly increases: 

 f୭ = − ቤቀxaቁିଶୠቤ (1) 

All other utility functions are modeled as a generalized bell 
function in the expression (Eq. 2), because their distribution has a 
clear peak and is roughly symmetrical. For example, Fig. 4 shows 
the histogram of the relative distance between the humans 
resulting from the trajectory analysis of the experiments in 
Section 3.1. This indicates that people’s average distance during 
walking alongside was 0.75 m. 

 
Figure 4.  Probability corresponding to the relative distance between 

center of mass of two people walking together. 

  f୶ = ଵଵାฬቀ౮షౙ౗ ቁమౘฬ − 1 (2) 

This power function expression, which evaluates variable x, has 
three parameters. Parameter “a” is related to the tolerance of the 
function, parameter “b” corresponds to the curve steepness factor, 
and parameter “c” is the curve’s center. The values of each 
variable are shown in Table 1. 

In our model, we propose to compute the overall walking utility as 
a combination of individual utilities. We propose a utility function U୲ for agent i positioned at point pi toward its partner's position pj 
as follows: 

 
U(p୧, p୨) = kO · fO + kS · fS + kRౚ · fRౚ + kR౗ · fR౗ + kR౬ · fR౬ + kM౗ · fM౗ + kM౬ · fM౬ + kM౭ · fM౭ 

(3)

In this expression variables f୶ correspond to the utility functions 
of each variable x which are weighted by weighting constants k୶. 
Expression (3) outputs a higher utility when a walking agent and a 
partner are moving side by side towards a goal location. 

3.2.3 Planning 
We propose the following three models for the planning process: 

Standard Prediction:  

 This is based on a commonly used method [13, 21] of side-by-
side walking that uses linear extrapolation of the velocity to 
predict the position of the partner at the next moment and 
moves the robot to a position that is next to the partner (figure 
5a). It predicts the partner's position at the next moment as a 
projection of the previous position with previous velocity, i.e.  

 pො୲ାଵ୨ = p୲୨ + v୲୨ · ∆t (4)

where pො୲ାଵ୨ is the predicted position of partner j at next time step 

t+1 and p୲୨  and v୲୨ are the observed position and velocity at time 
step t. This model does not fully use the developed utilities (Eq. 
3). Instead, it uses the following equation: 

 
US୲(p୧, p୨) = kO · fO + kR౬ · fR౬ + kRౚ · fRౚ + kR౗ ·fR౗ 

(5)

Among all possible positions P, the next position is selected to 
maximize utility US୲(p୧, p୨) in (Eq. 5):  

 pො୲ାଵ୧ = argmax൛௣೔ห௉೔ൟ US୲(𝑝௜, pො୲ାଵ୨ ) (6)

Self anticipation: 

In this model an agent anticipates its future utility. Thus, it 
plans a motion to maximize its own utility (Eq. 3) in the next 
time step. It only anticipates its utility, not the partner's utility. 
Instead, it uses the linear extrapolation of velocity to predict the 
position of the partner at the next moment (Eq. 4). Fig. 5b 
illustrates how this model plans its next motion. This model's 
planning can be described with the following equation: 

 pො୲ାଵ୧ = argmax൛௣೔ห௉೔ൟ U(𝑝௜, pො୲ାଵ୨ ) (7)

The main difference in the implementation between standard 
prediction and self anticipation is the additional knowledge of 
subgoals in the environment together with the preferred linear 
velocity, angular velocity and acceleration.  

Partner and self anticipation:  

In this model an agent anticipates its future utility as well as its 
partner's future utility. It plans to output a motion to maximize 
its own utility as well as its partner's utility, both denoted with 
(Eq. 3), in the next time step. Fig. 5c illustrates how this model 
plans its next motion. This model's planning can be described 
with the following equation: 
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Table 1. Parameters determined for utility function 

Parameter a b c k fRౚ: Social relative distance  (m) 0.45 2.00 0.75 0.25fR౗: Relative angle (rad) 0.08 3.00 π/2 0.32fR౬: Relative velocity (m/s) 0.20 1.20 0.0 0.01fO: Distance to Obstacles (m) 20.0 0.20 ----- 0.11fS: Angle to Subgoal (rad) 0.75 1.00 0.0 0.20fM౬: Velocity (m/s) 0.90 1.6 1.10 0.05fM౭: Angular velocity (rad/s) 0.7 4.4 0.0 0.01fM౗: Acceleration (m/s2) 1.50 1.0 0.0 0.01

 pො୲ାଵ୧ = argmax൛௣೔ห௉೔ൟ,൛௣ೕห௉ೕൟ{U(𝑝௜, 𝑝௝)+ U(𝑝௝, 𝑝௜)} (8)

All models are implemented as a planner that searches for the next 
position among possible positions in the next step. The possible 
positions are implemented as a grid which we call the anticipation 
grid ( 𝑃௜  in Eqs. 6-8). The center of the grid is the linear 
extrapolation of the current velocity, i.e., pො୲ାଵ୧ . The grid is 
composed of a 7 x 7 matrix of cells of 0.20 m x 0.20 m in size. 
We set the time for prediction/anticipation (∆t) to be 1 second.  

 
(a) Standard   (b) Self Anticipation   (c) Partner & Self 

Prediction    Anticipation 

Figure 5.  Different approaches for side by side walking.   

3.3 Analysis 
3.3.1 Calibration of parameters 
We manually calibrated the parameters for utility in Eqs. 3 and 5 
from the observed data. The same set of data was used for 
calibration and testing. The same set of parameters is used for 
each of the three different planning methods: standard prediction, 
self anticipation, and partner and self anticipation. We took the 
following steps for parameter calibration: 

1. Set initial parameters 

It is highly possible that the probability distribution (e.g., Fig. 
4) for each characteristic is a consequence of each utility. Thus, 
we determined the initial parameters from the probability 
distribution. We set the utility function to output 0 when x-
=𝑥୮ୣୟ୩  and -1 when x=𝑥୮ୣୟ୩ ± 𝑥ୱୢ , where 𝑥୮ୣୟ୩  is the peak 
and 𝑥ୱୢ is the standard deviation for this probability distribution 
for variable x. We set c to be 𝑥୮ୣୟ୩, a to be 𝑥ୱୢ, and b to be 1. 
Each k was set to be 1. 

2. Calibrate parameters for each utility function 

We used the human collected data to run a simulator and adjust 
the value of parameters a, b, and c. In this simulator an agent 
receives the initial position and the orientation of one of the 

persons, and then at step (p୲୧ , p୲୨ ), the next position at (pො୲ାଵ୧ ) is 
predicted, and prediction error (|pො୲ାଵ୧ − p୲୧|) is computed. This 
process was done for different pairs of people and different 
obstacle configurations for each of the three planning methods. 

3. Calibrate the integration parameter 

Finally, the best set of parameters k was adjusted. These 
constants determine the dominant factors in the utility functions.  

The table 1 shows the calibrated parameters for partner and self 
anticipation method. The k parameter represents the balance 
among each utilities. It indicates that mainly the utility is affected 
by relative distance, angle, and distance to the object, all of which 
are also used in the equation (5) too. In addition, one fundamental 
difference is the considerable influence from the subgoal utility. 
The c parameter represents the peak of utilities.  

3.3.2 Comparison of planning model 
To evaluate our proposed utility function and planning method, 
we ran the simulator using the collected data. For each set of 
collected trajectories (we dropped non-useful trajectory sets which 

contained noise in the human trajectories, hence, 395 trajectories 
were processed in total), we used the utility function and planning 
method to simulate the person's motion (referred as simulated 
agent and simulated trajectory), while the partner's motion was 
read from actual collected trajectories. In the simulation, the 
initial position and orientation as well as the destination were 
given to the simulated agent, which were read from real 
trajectories. Then, for each sampling rate of 30ms, the simulated 
agent computes its next position from its previous position and the 
partner's real position. Finally, the goodness of fit is computed as 
the error in the distance of each time step of the simulated 
trajectory and its real trajectory. 

The figure 6 shows the average and standard error of the error in 
distance from each planning method. A one-way repeated-
measure analysis of variance (ANOVA) was conducted for the 
error. A significant main effect was revealed (F(2, 788)=17.519, 
p<.001, 

2
pη =043). A multiple comparison with Bonferroni 

method was conducted, which revealed that the error for standard 
prediction is significantly higher than that for partner and self 
anticipation and self anticipation (p<.001). No significance was 
found between self anticipation and partner and self anticipation 
(p=1.0). Thus, from this simulation, we confirmed that the 
anticipation is effective, but the effect of partner and self 
anticipation towards a simple self anticipation is not revealed. 
However, in the simulation, the partner agent moved based on the 
recorded trajectory and not reacted to the agent's motion. We 
wondered whether this would be due to a lack of reactivity in the 
simulation, and thus decided to test the methods with a real robot. 

 
Figure 6.  Error distance estimation from the simulation results.  

4. IMPLEMENTATION  
A robot walking together with a human requires that several 
functionalities be operating simultaneously. Fig. 7 shows the 
framework of our system. The environmental map and the 
positions of the robot and the human partner are fed to the path 
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planner; the output of the system is the next position of the robot 
where the best utility is anticipated. 

 
Figure 7.  System framework.  The map building and subgoal 

computation are performed beforehand. Then the robot performs 
localization, human tracking, and Side-by-Side planning 
simultaneously. The output is the robot’s next anticipated position. 

4.1 Hardware 
We used Robovie, a communication robot characterized by its 
human-like physical expressions to interact with people through 
utterances and gestures. It is 1.20 m high and 0.40 m in diameter. 
For perception, it has motor encoders for proprioceptive sensing 
(Pioneer 3 mobile platform from Adept MobileRobots), and two 
30 m range laser sensors (UTM-30LX from Hokuyo) covering 
360° around the robot. 

4.2 Human Detection and Tracking 
For human detection and tracking we used range information from 
the robot’s on-board laser sensors [15, 27]. The robot segments 
data into clusters to identify leg candidates and identify human 
candidates (leg pairs). The system initializes a human position at 
the center of two successive leg clusters and employs a particle 
filter (PF) per human for tracking the human position in 
successive cycles. The tracking is performed in an odometry 
based coordinate system and then transformed to global 
coordinates to avoid data jumps when the global position is 
corrected from the robot localization. 

4.3 Map building and subgoal computation 
We modeled the environment based on our previous study [16]. 
The model involves two tiers of representation. The first tier 
corresponds to a survey view of the environment. For this, we 
followed established procedures and state of the art algorithms for 
map building. To build a grid map, we applied ICP [2] for  
aligning  consecutive  laser  scans . We used libraries provided in 
the slam6d framework [18, 23] for the final implementation in the 
map alignment. The resulting points were voted in a grid. We set 
the resolution of the grid as 0.05 x 0.05 m. The second tier of 
representation corresponds to a route view. Morales et al. 
proposed a path segmentation algorithm for retrieving a route  
[16]. In the algorithm, the Voronoi diagram of the grid map of the 
environment is computed, then, from the topological 
representation, redundant nodes are erased and remaining nodes 
are the subgoals humans walk in the environment. The obtained 
subgoals were used in the side-by-side walking path planner. 

4.4 Robot Localization 
We used a particle filter based method for localization with the 
grid map we built. Each particle contains a pose given by the state 
vector 𝐱ത = {𝒙, 𝒚, 𝜽}  which is the position 𝒙  and 𝒚  and the 
orientation 𝜽  of the robot. The particle filter estimates the 
posterior using two laser sensors scanning the environment taking 
into consideration the measurement likelihood. The laser 
likelihood model used in this work computes  𝒑(𝐳|𝐱, 𝐦) based on 
a laser scan 𝐳 at a position 𝐱 compared to the grid map 𝐦 [24]. 

The map update depends on the state of the particle dispersion and 
the matching of the laser scans. The particles which are more 
likely to be correct after the map matching have a higher 
likelihood, then particle re-sampling is performed and the robot’s 
pose is given by the average weight of the particles. 

4.5 Side-by-side Walking Path Planner 
The outputs from other modules is combined at this planner for 
side-by-side walking. The planner is implemented with the model 
described in Section 3. The position of the robot and the 
surrounding obstacles are fed from the localization module and 
the map. The position of the target human is fed from the human 
detection and tracking module. A moving average filter with a 1 
second time window is applied for the positions when we compute 
velocities (for fM౬and fM౭) and acceleration (for fM౗). 

For planning, we used a 7x7 matrix of 0.20 m grids whose center 
is the linear extrapolation of the current velocity, i.e.  pො୲ାଵ୧ . We set 
the time for prediction/anticipation (∆t) to be 1 second. With Eqs. 
3 and 8, we computed the grid so that it can anticipate the best 
utility. The robot's forward and rotation velocities are computed to 
arrive at the center of the computed grid, which is sent to the 
mobile base. 

Regarding the parameters for a robot, we found it necessary to 
adjust them. For instance, a person in the data collection might 
closely approach an obstacle, but this is not safe enough for a 
robot. Due to its  locomotion constraints, when it approaches too 
close to a wall, it might have a collision. Similarly, due to the 
sensory noise in the human tracking module, the reading of the 
velocities is not as stable as the velocities measured with a human 
tracker with multiple laser-range finders used in the data 
collection. Thus, we manually adjusted the parameters to be 
feasible for real robots. For the comparison to be as fair as 
possible, in each planning method the same parameters were used. 

5. Evaluation 
5.1 Hypotheses and Prediction 
While the anticipation model was found to be more effective than 
the standard prediction in the simulation, it does not necessarily 
ensure the usefulness of the proposed method with a real robot. 
There are two possible problems in the real world. First the 
dynamics of the real robot and second the behavior of real people 
towards the robot, both of which were not considered in the 
simulation. Further, in the simulation, the difference between the 
two anticipation methods was not revealed. 

Hence, we conducted an evaluation experiment to confirm that the 
method works as designed and  produces good side-by-side 
walking with real people. For that purpose, we primarily 
compared the proposed method (partner and self anticipation 
method) with the standard prediction method because the latter 
represents a traditional approach. Previous studies only proposed 
a method with linear extrapolation of velocity (which the standard 
prediction method performs) without proposing a way to 
anticipate either the robot or its partner’s position. In addition, we 
expect to reproduce the improvement from self anticipation to 
partner and self anticipation in the evaluation. 

With good side-by-side walking, a person’s walking would 
probably be less hindered, so he/she could walk smoothly and 
consider the robot good. Based on this idea, we made this 
prediction: 

Prediction: since the robot with the partner and self 
anticipation method provides a smoother and more natural 
impression, it will be perceived as better in its overall 
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evaluation than either the one with the standard prediction 
method or with the self anticipation method. 

5.2 Method 
5.2.1 Participants 
Fifteen Japanese people (nine males and six females whose 
average age was 21.9) were paid for their participation in the 
evaluation experiments. 

5.2.2 Conditions 
The experiment was a within-subject design with one factor, 
control method. Three conditions were prepared: 

Standard prediction: the robot navigated with the standard 
prediction method (Eqs. 5 and 6) described in Section 3.2. 

Self anticipation: the robot navigated with the self anticipation 
method (Eqs. 3 and 7) described in Section 3.2. 

Partner and self anticipation: the robot navigated with the 
partner and self anticipation method (Eqs.  3 and 8) described 
in Section 3.2.  

5.2.3 Procedure 
Participants evaluated three methods of side-by-side walking. 
They walked in a side-by-side formation with the robot toward 
their destination along a given course. The side-by-side situation 
was explained as a situation where people talk during the walk 
and typically see their face each other.   

Two courses were prepared: with obstacles (Fig. 8) and without 
obstacles (the same start positions and goal with the course shown 
in Fig. 8). This was to confirm the effect in situations with or 
without obstacles. Each participant walked each course three 
times with each condition presented in Section 5.2.2. The orders 
of the conditions were counterbalanced. 

For each walk, participants stood at the start position (Fig. 8). 
After the experimenter confirmed that he/she was ready, the 
robot's program was initiated. The robot autonomously navigated 
based on the program reported in Section 4 until it arrived at the 
goal. Participants answered questionnaires after they arrived at the 
goal. 

 
Figure 8.  Experimental Environment 

5.3 Measurement 
After each session, participants filled out questionnaires with the 
following single item scales on a 1-to-7 point Likert scale for the 
following impressions: 

・ Smoothness 
・ Naturalness 
・ Overall evaluation. 

5.4 Result 
Fig. 9 shows the without-obstacle situation result. A one-way 
repeated-measure analysis of variance (ANOVA) was conducted. 
A significant main effect was revealed in smoothness (F(2, 
28)=13.485, p<.000, 

2
pη =491), naturalness (F(2, 28)=13.000, 

p=.007, 
2

pη =.539), and overall evaluation (F(2, 28)=15.697, 
p<.001, 

2
pη =.529).  

A multiple comparison with the Bonferroni method revealed that 
the ratings for partner and self anticipation are significantly 
higher than that for standard prediction (For smoothness: p=.001, 
naturalness: p=.005, and overall evaluation: p=.001). The 
difference between standard prediction and self anticipation are 
almost significant in all ratings (For naturalness: p=.065, 
smoothness: p=.084, overall evaluation: p=.069). The difference 
between self anticipation and partner and self anticipation are 
almost significant for smoothness (p=.051), not significant for 
naturalness (p=1.0), and significant in overall evaluation (p=.009). 

Thus, in a situation without obstacles, participants clearly 
evaluated the partner and self anticipation method as smoother, 
more natural, and better overall than the standard prediction 
method. The difference between the partner and self anticipation 
and self anticipation methods was rather subtle, although overall 
participants preferred the former method. 

 
Figure 9.  Evaluation result (without obstacle) 

Fig. 10 shows the result for with-obstacle situation. A one-way 
repeated-measure analysis of variance (ANOVA) was conducted. 
A significant main effect was revealed in smoothness (F(2, 
28)=17.982, p<.001, 

2
pη =.562), naturalness (F(2, 28)=8.788, 

p=.001, 
2

pη =.386), and overall evaluation (F(2, 28)=6.923, 
p=.004, 

2
pη =.331). A multiple comparison with Bonferroni 

method was conducted for each ratings.  

The ratings for partner and self anticipation are significantly 
higher than that for standard prediction for all ratings 
(smoothness: p=.001, naturalness: p=.006, and overall evaluation: 
p=.010), and for self anticipation (smoothness: p=.001, 
naturalness: p=.034, and overall evaluation: p=.016). The 
difference between standard prediction and self anticipation was 
not significant (smoothness: p=.136, naturalness: p=.660, and 
overall evaluation: p=1.0).  

Thus, in a situation with obstacles, participants evaluated the 
partner and self anticipation method as the best in all ratings. The 
difference between the standard prediction method and the self 
anticipation method was not significant. It seems that the presence 
of obstacles change the perception of the self anticipation method. 
Participants possibly evaluated it different from the standard 
prediction method in a without-obstacle situation (as, there are 
almost significant differences), but with obstacles it is evaluated 
rather similar to the standard prediction method. 

Overall, the result follows our prediction. The robot with partner 
and self anticipation method provided more smooth and natural 
impression than other methods (in both situation for standard 
prediction method, and in with-obstacle situation for self 
anticipation method). The participants' overall evaluation for the 
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partner and self anticipation method is better than their ratings for 
standard prediction method. 

 
Figure 10.  Evaluation result (with obstacle) 

In the interview, we asked participants about perceived difference 
across the conditions. Participants mentioned that the robot kept a 
constant distance with which they felt comfortable while walking 
in all three methods; they also realized that the robot was adapting 
to the relative distance. 

In relation with standard prediction, participants mentioned that 
the robot seemed to be nervous and sensitive to their movements, 
therefore they did not feel that the walking was smooth and 
natural. Some participants commented that the robot in the self 
and partner anticipation method made space for them, as shown 
in the figure 1 (a): "I felt that when I was coming close to the trash 
can the robot moved away and gave me space to pass". This 
suggests that the self and partner anticipation method 
successfully consider the partner's utility, and thus participants 
perceived better impression to it. 

Figure 11 shows a scene when the robot opens space for the 
partner to walk while avoiding an obstacle with the self and 
partner anticipation method. The figure shows a transition of 
utility when the partner was approaching to the obstacle. The 
partner is represented as the circle at the top (red), and the bottom 
circle (blue) shows the current position of the robot. Their 
anticipated/planned position is shown to their right (yellow and 
blue circles) respectively. The anticipation grids are shown around 
the anticipated positions for both, the partner and the robot. 

The notable moment is shown in the center of Figure 11 where the 
robot anticipated the person to go to the center of the corridor to 
avoid the obstacle, and planed its position towards the right side 
(bottom in the figure) of the corridor. Thus, in the right figure, 
when they were close to the obstacle, they are already in a course 
of jointly avoiding the obstacle still in a side-by-side formation. 

 
Figure 11.  Behavior of "self and partner anticipation" while avoiding 

an obstacle. 

Such motion is only possible with the partner and self anticipation 
method. In the case when self anticipation method faces the same 
situation, it does not open space for the partner. Figure 12 shows a 
scene of the self anticipation method experiment. It is the same 

situation as the figure 11 where they were approaching to the 
obstacle. At the moment where there is the obstacle in front of the 
partner, it failed to anticipate the partner's avoiding motion. It only 
noticed the partner avoiding motion after the partner started to 
move towards the center of the corridor.  

 
Figure 12.  Behavior of "self anticipation" while avoiding an obstacle.  

6. DISCUSSION 
6.1 Contributions 
The capability of side-by-side walking developed here promises to 
provide substantial pragmatic value. Many possible scenarios 
exist in daily interactions where a robot might walk side-by-side 
with a person. For example, consider a guidance application in a 
shopping mall, where a robot escorts a visitor to his destination. If 
they engage in conversation while walking, a side-by-side 
walking formation would be much more natural than a formation 
where the robot leads or follows. 

6.2 Extending the Model 
So far, the model is only for side-by-side situations with static 
obstacles, but we believe we can easily extend the method to more 
general situations. The basic idea of using utility is very close to 
the general idea in robotics to use potentials. The potential field 
method and its extension are widely used in robotics. 

Our method requires subgoal information and assumes that when 
people walk, they share the information about their destination. At 
the same time, we consider it possible to extend our method to 
situations where a robot is not informed about the destination. 
From how people walk, it might be possible to infer the next 
subgoal of the person walking. For example, when a person is 
around a corner, a robot could have two hypotheses: going 
straight toward a subgoal or turning toward a subgoal in the 
branching direction. Based on how people walk, from the fitting 
with the assumed utility value, we consider it possible to predict 
the direction the person will take so that the robot can quickly 
update its hypothetical subgoal for moving. We consider this 
interesting future work. 

6.3 Limitations 
In this study, the parameters were not systematically calibrated, 
though it would be important to develop a method to calibrate 
them. Particularly a computational method to translate parameters 
used for human-human interaction to human-robot interaction 
would be beneficial. The reported parameters were calibrated for 
Japanese people, but it would require re-calibration for a different 
culture or context, as social distance alter along with context [9]. 

We did not specifically adjust parameters in favor of the proposed 
method for the experiment with the robot, though one could argue 
that the result would be due to the specific parameters we used. 
We believe that there are quantitative difference across the 
methods. For example, the standard prediction method and the 
self anticipation method lacks the capacity to quickly make a 
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space for the partner (see Fig. 1 right and Fig. 12), as it does not 
predict the partner's motion constraints relate to obstacle (see Fig. 
1 left and Fig. 11). The standard prediction method further lacks 
the capacity to move the robot toward the goal. Thus, we consider 
that the observed difference is due to the nature of the methods, 
but not due to the specific parameters. 

The study only addressed peer-type relationship between people 
who walk in side-by-side, but leader-follower relationships would 
considerably change the situation. For example, as reported in [13, 
21], in case a caregiver leads and a robotic wheelchair follows, it 
is clear who is leading, thus the standard prediction model would 
produce side-by-side walking as good as our proposed model. As 
observed, what is missing in standard prediction method is a 
capacity to take a lead and move toward the goal; the 
experimental result revealed that this is crucial in side-by-side 
walking with peer-type relationship. 

7. CONCLUSION 
We developed a computational model for side-by-side walking. A 
utility model describing how people prefer to move was built 
based on recorded trajectories of pairs of people walking side-by-
side. Parameters for the model were chosen which best predicted 
the future walking motion of the people recorded in the trajectory 
data. This model was then used to generate appropriate walking 
behavior for an autonomous robot walking alongside a person. 
Our evaluations showed that the partner and self anticipation 
method, that is, projecting the future position of the partner based 
on the utility model and then planning an appropriate path for an 
autonomous mobile robot by using the same utility model to 
mimic human behavior, provided better results than simpler 
planning mechanisms.  
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