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Abstract—This study provides an in-depth analysis and pradtal
solution to the problem of designing and implementig a human-
robot team for simple conversational interactions.Models for
operation timing, customer satisfaction and customerobot
interaction are presented, based on which a simulain tool is
developed to estimate fan-out and robot team perfonance.
Techniques for managing interaction flow and operair task
assignment are introduced. In simulation, the effdoveness of
different techniques and factors related to team p#ormance are
studied. A case study on deploying multiple roboti a shopping
mall is then presented to demonstrate the usefulnesf our study in
helping the design and implementation of social rafits in real-
world settings.

Index Terms—Human-robot interaction, modeling, simulation,
social robots

environments. Social robots have been placed
museums [1] — [3], exhibition expos [4], receptiareas [5],
shopping malls [6, 7], transit stations [8, 9] aidler public areas
[10]. As these various experimental applicationgehahown,
social robots have a promising future of not ontiraating
people by their novelty, but also being able tovmte useful and
reliable services in our daily life.

|. INTRODUCTION

Supervision by a human operator is hecessary whé
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This paper is an extension of a previous stud$2j,fto which we have added
implementation methods for interaction managenesitiiques and simulation,
more analysis on metrics, and more detailed degmmgpabout the field trial.

robots to communicate with people in real worl

deploying social robots in the real world in ortterl) ensure
safety of both humans and the robot, 2) deal witbxpected
situations, and 3) enrich the content of sociakrattions
between humans and robots by incorporating an tp&ra

knowledge and common sense. As the ever-increasing
autonomy of robots enables more tasks to be done by

automation, the operator’s workload will be redyceabling
multiple robots to be controlled using the operaténee time.
Choosing the proper configuration of a teleoperatecial
robot team is often difficult, because differerdttas affect the
team dynamics, such as the level of robot autondheytime
required for teleoperation tasks, and the numbeolodts to be
used. Because awkwardly acting robots may givegatne
impression to customers and bystanders [11] nbtglesirable
to try robot deployments with arbitrary settingsaineal-world
application — this would carry a high risk of loginustomers
in the long term. Therefore, it is necessary todjmtethe

ecently, there has been much research into usiciglso performance of a hu_man-ropot team prior to deplc_mmg
d The purpose of this study is to present a modegngnique

tar human-robot teams conducting short-term intéoas, and
to provide practical techniques and methods tontipé team
performance. A previous study [12] gives a detailesicription
about interaction modeling, based on which we aidreore
detail about implementation issues and furtheryamgin this
paper. Techniques related to managing interaction ind
operator task assignment will be introduced. Thee, will
ﬁcuss how simulation can be used to analyze ffeetg of
these techniques and other factors by estimatingoé and
team performance under different conditions. Final case
study on deploying multiple robots in a shoppinglinig
presented to demonstrate the usefulness of ouy Bileklping
the design and implementation of social robotseia-world
settings.

Il. RELATED LITERATURE

The overall theme of this paper is to discuss temmon
issues existing in the study of social human-rabigractions.

One issue is how to evaluate and improve the team

performance of multiple social robots; the otherh@w to
practically implement a human-robot team for
interactions based on current state-of-the-artteldyies. This
section is devoted to providing a brief survey dbeach of
those issues. The first part discusses metricevatuating
human-robot teams in previous studies, and thensepart
discusses the existing technologies which provikful hints
for the implementation of our system.
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Fig. 1. Human-robot interaction model

A. Metrics on Multi-Robot Control and Social HRI

Studies of human-robot team performance are relabed
various topics, such as situational awareness [ddjlistable
autonomy [14] and mixed-initiative control [15]. FHoredicting
team size and evaluating performance, metrics asclan-out
[16, 17], neglect tolerance [18] and interactioficegncy [19,
20] have been studied.

The “fan-out” metric represents the theoretical erpp
boundary for the number of robots that one opersdarcontrol
based on aggregate task metrics such as interattienand
neglect time. In the problem scope of social robetsfind that
by considering human factors such as a customersrétion
with delays in the robot’s responses enables gseate a more
refined model of fan-out for a human-robot teamfqreming
social interaction tasks. Pioneering studies oeoggtration of
multiple social robots have been conducted, whenegtrics
such as situation coverage and critical time rf2ib 22] are
introduced to measure task difficulty for a robeam in
conversational interactions.

Besides quantitative evaluations, extensive stutie® been
conducted on the social psychological aspect ofdnimbot
interactions. Dautenhahn [23] and Duffy [24] stullibe effect
of appropriate humanlike qualities applied to sbecizbots.
Sabanovic et al. [25] suggest evaluating sociabt®based on
observational analysis, and proposed several sdhetors for
designing human-robot interaction, such as gaaéfading and
rhythmicity.

Determining an appropriate metric for evaluatingcialb
“effectiveness” is difficult, since the purpose ddctionality
of social robots differ in various applications [26ut a
gquantitative metric is still necessary for compgrithe
performance of a social robot team on various don as
inputs to the system. This study will propose ariodtased on
waiting time of users in conversations with robotsd
demonstrate its usefulness through experimentsdiedd trial.

B. Technologies for Social HRI

While rapid progress has been made to improve rohg

intelligence, the lack of autonomy is still a majpmttleneck in
achieving more intelligent robots for social intrans. For
example, a speech recognition system that performitia
92.5% accuracy in 75dBA noise [27] achieved only32d
accuracy in a real-world environment [9]. Hencedemcurrent
state-of-the-art technology, we still need to addptman
perception and intelligence to take control or wezofrom
failures of automation.

Techniques have been developed to enable smooth
transitions between automation and operation, oertable
robots to act less awkwardly under automation fagu A
method called proactive timing control [21, 22] veeeveloped
to proactively adjust robot behaviors to delay thence of
automation failure before the operator is assigned.
Conversational fillers [11] were studied to mitigatuman
frustration when robots cannot respond immediaitelgome
conversations.

The studies above have provided us valuable clué®w to
manage social interactions using semi-autonomdae teams.

In this study, we will discuss the usefulness ofchsu
technologies in managing waiting times of usersirgur
conversations with robots, and also introduce other
technologies such as audio buffering to improve otob
performance by reducing waiting time.

I1l. HUMAN-ROBOT INTERACTION MODEL AND METRIC

Fig. 1 illustrates the human-robot interaction modEe
study human-robot teams consisting of a singleaiperand a
certain number of semi-autonomous robots to condiatbg-
based social interactions with “customers”. We tseterm
“customer” to refer to a person who engages in aoci
interaction with a robot. This term has some sintitawith
Scholtz’s role of “peer” [28] in that it represetit® human side
in a face-to-face interaction with a robot. Budiifers from the
“peer” or “teammate” role in that the human andatodre not
collaborating to achieve a single goal; rather,ithman’s role
as aservice receivein the interaction, in contrast to the robot’s
role as aservice provider

One thing to mention about our overall model i¢ treae we
use the term “Social HRI” to refer to human-robderaction
through short-term conversations. In terms of Nésvabtion
of bands of cognition [29], these short-term intdoms
correspond to the “cognitive band” of cognition,ext we are
concerned with individual utterances and speecls &t
in{eractions that last for tens of seconds. Longen

eractions in the “rational band” (minutes to h&uor the
social band” (days to months) will require additéd
considerations beyond the models presented irsthdy.

In
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A. Operator Model

In study [30], a human operator is modeled as zesén a
single-server queuing network. In this paper, wedehdhe
operator as having the same role, whose job isritral robots
in the situations which cannot be handled autonahyowr
when a high risk of error exists in automation. gesform an
operation, the operator should acquire situatioraraness
about the interaction between the customer and rabd give
proper inputs to control robot behaviors.

As in studies [17], [20] and [31], operation tinreférred to
as interaction time) is used to evaluate the perémce of a
human-robot team, which generally consists of ime tfor (a)
gaining situation awareness, (b) problem solvingdecision
making) and (c) command expression via the interfat [32],
the process of situation awareness is further ddfiny levels
representing perception of elements in current asin,
comprehension of the current situation, and pr@aaf future
status. But as mentioned in [17], these elemenigtefaction
time occur mostly in the user’s mind and are traeefifficult
to measure directly.

To model the activities of the operator in a mealle way,
we propose a simplified model which divides an afien into
“listening” and “actuation” time as in (1). Listeng time
corresponds to the time for the operator to recagrthe
customer’'s request from audio data, and actuatiome t
corresponds to the time from the end of listenonthe end of an
operation. Notice that listening time may not beado the time
for situation awareness, and actuation time does amy
represent the time for command expression, becprsdem
solving can happen at any time during an operation.

toperation = listen T tactuation (1)
The benefit of this modeling is that each parbpération can
be measured or estimated separately, and thensangze
estimation of total operation time can be calculdtased on the
estimates of each part. Section IV-C will give astireation
method for listening time based on the customdt&rance time,
and Section IV-D will discuss the estimation ofuetion time
when various types of input methods exist in therapon
interface.

B. Customer-Robot Interaction Model

A customer-robot interaction progresses byakehange of
requests and responses between a customer anat aRvious
work shows that conversational human-robot intéasttend to
follow certain patterns [22], providing the posstgi of
predicting the next step in advance based on tirermustate of

a conversation. As illustrated by Fig. 2, we mdtiel customer-

robot interaction by dividing an interaction intohgses

representing unique states in an interaction:

* Non-Interactive Phase This phase is when the robot is
in an idle state and waiting for customer arrival.

» Pre-Critical Phase This is the phase when a customer
arrives and the interaction can be handled autcaibti
It includes automatic detection of customer arrigad
behaviors like greeting or making a self-introdactiby
the robot.

e Critical Phase This phase is when an operator’s attention
is needed because of a high risk of error by autioma
This phase starts when it is the customer’s turspeak,
because the operator is needed from that timedardo
recognize the customer’'s request and make a correct
response.

» Post-Critical Phase This phase is when the operator’s
control is finished, and the automated system teantie
execution of behaviors to finish the interaction.

The key concept in this modeling is that aerattion can
be divided intoCritical andNon-Critical phases, determined
by whether or not the operator’s attention is ndetksing such
definitions, we can manage the teleoperation otipialrobots
by allocating the operator only to the robots iitical phase,
which will be explained in detail in Section 4.

C. Customer Satisfaction Modéh this study, we define
“customer satisfaction” as a quantitative evaluataf the
quality of simple short-term conversations betweestomers
and robots from the customer’s perspective. Previegearch
shows that customers get frustrated while waitimg ai
conversation with a robot, even if a correct resgors
eventually made by the robot after certain amofititee [11].
Based on this finding, we model customer satisfactis a
function of waiting time.

According to the customer-robot interaction mottedye are
two waiting times for a customer in an interactiaiting for
the robot to finish speaking in the pre-criticabph, which we
designate asthefore ), and waiting for the robot to ceskafter
the customer has asked a question in the criticas@, which
we designate atager ). We hypothetically model theodno
customer satisfaction as a linear function of wiaies before
and after the question as in (2), where satisfagt#) has an
initial value $ and drops with rates  afd  during wait times
before thefore ) and aftetaster () @ question.

Satisfaction = Sy — Alpepore — Plagter

@)
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This model is defined for the ask-reply type obrttierm
dialogs as defined in the previous sub-section,isudsed on
an assumption that a correct and socially acceptasiponse
can be made by the operator’'s manipulation. Tharpater:a
andB reflect the different drop rates of satistagtiwhich can
be affected by various psychological and envirortaldactors
related to the type of interaction. Among theseédiag; we find
the context (or topic) of conversation is an impaottfactor in
determininge anc® , reflecting the general complexif
questions and affecting the customers’ expectatimmard the
robot's response time. In Section V, we will meastine
parameter values from data collection with two efiit
contextual settings, and we will discuss the difexe of the
parameters in reflecting the complexity of the teaversation
contexts.

Regardless of conversation context, we beltbea < B in
general, because the time waiting for an answeraie critical
than the time waiting before asking a question,sitegimore
anxiety and frustration to the customer. This hipets, along
with the validity of the linear model, will also beerified in
Section V.

D. Situation Coverage Metric

Situation coverage was discovered to be a very itapb
metric regarding the performance of teleoperatedbsmbots in
previous studies [21, 22]. It is defined as thecprtage among
all interchanges between customers and robots,wioich
appropriate behaviors are prepared for the roloatespond.

A situation is “covered” when the robot hasidtbin behavior
to respond to the customer’s request, and suchavimr can be
triggered immediately by the operator using coroesling
inputs through the Ul, such as by clicking a buttArsituation
is “uncovered” when there is no such built-in babgwhich
requires the operator to improvise a response Usingr-level
inputs, such as by typing an entire phrase forabet to speak.
Thus, responding to uncovered situations genetakgs much
longer than responding to covered situations.

Situation coverage results from interactiongween a
customer and a robot, and it influences the robm&ponse
speed by determining the efficiency of inputs oa tperator’'s
side. A higher level of situation coverage is ala/gyeferable
for an application, because in such case a langgyoption of
operations can be performed quickly, resulting horger
customer wait time on average and enabling moretsaio be
operated simultaneously. But even for a well-pregasystem,
uncovered situations may occur, since customettigmsscan be
difficult to predict before the robots encountealreustomers.
We will perform a concrete analysis about the éffe€ situation
coverage on the performance of a human-robot tearthe
following sections.

IV. INTERACTION-MANAGEMENT TECHNIQUES

In this section, we present the key techniques lvbi@able us
to build an efficient system for operating multipiebots in
dialog-based interactions. First, we define thebjgm we are
going to solve, which is managing the conflictingmthnds for
operator attention among multiple robots. Then,imeoduce

techniques for addressing two key problems thaedrom these
conflicts. Finally, a switching algorithm will bergsented that
enables efficient teleoperation of multiple robbysintegrating
these techniques.

A. Problem in Multi-Robot Control

Before discussing details of these techniquesjrsedefine
the problem in multi-robot control that we are gpio solve.
We believe that the major problem in the teleopemnaof a
multi-robot team is the handling of conflicts whamultiple
robots require operator attention (i.e. are inaitphases) at
the same time.

A
S — E—
Robor 2 C ——
Robot 3 — E—
@ Time
A
S, — E—
Robot 2 — E—
Robot 3 — E—
Tim:e

(®)
[ TPre-Critical [N Critical [ ]Post-Critical

Fig. 3. Two examples of three simultaneous intévast

Fig. 3 shows two examples of controlling thmedots,
illustrating how interactions can conflict. Fig.a3(s an ideal
case, wherein the critical phases are non-ovemgppand
robots can be controlled in sequence by allocdtiegoperator
to the robots in critical phases. Fig. 3(b) is aemealistic case
when multiple robots are interacting with customatsthe
same time. As we can see, the critical phasesaypv&iith each
other, resulting in conflicting demands for operaitiention.
The conflicts have two effects that may cause autéon
failures:

) The additional time spent waiting for an operatanses
critical phases to get longer, making the customeiis a
longer time after asking questions, which may resul
failure to satisfy the customers.

2) A customer may ask a question to one robot whige th
operator is busy with another robot, so the openatay
not be in time to hear what the customer has asked,
resulting in a failure of operation.

Addressing the first problem, we adopted techniduas
previous studies to mitigate customer frustratidmlewvaiting.

To solve the second problem, we developed an dudfering

technique to prevent loss of information and enaflieient

operation. Then using these techniques, a switcdliggrithm

was developed that handles wait-time management and

operator assignment as an integrated system.

=
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B. Wait-Time Management

Two mechanisms can be applied from previoudistuto
mitigate customer frustration during long waitimgée, which
we refer to a®Vait-Time Management

1) Proactive Timing Control (PTC)

Proactive timing control [21] is a techniquattklynamically
adjusts the timing of interactions in order to metvconflicts
when two or more robots need operator attentitimesgame time.
PTC can be defined as a sequence of robot behgadiermed
in the pre-critical phase to delay the entranca tatical phase,
such as utterances and gestures which keep theteatkiag for
a planned amount of time.

End of sequence

Sequential
Selector

Random

Start PTC Selector *

Sequential
Selector

Fig. 4. An implementation of proactive timing canlitr

An actual implementation of a proactive timimgntrol
module can be described by Fig. 4. A “phrase gras@ core
functioning unit in a PTC module. It is composedafequence
of logically connected phrases, designed suchdiugiping the
utterance after any phrase will still make sensedonversation.
An example phrase group and some of its phrasedistee
below:

Phrase Group:
- Phrase 1: Today is the shopping mall’s
anniversary. Phrase 2: There are many interesting
events.
- Phrase 3: | can tell you about any of them.
- Phrase 4: And | can give directions as well.

- Phrase 5: ...
The execution of a phrase group is controlled bsequential
selector”, which determines whether to stop or oot PTC
based on the operator’s availability. If the operas available
(i.e. has free time to control a robot), then PBG be stopped,
and the robot can proceed to the critical phaske@ise, the
sequential selector will select the next phras¢ha group to
continue PTC. Phrases in a group are designed tshbe
enough that the time length of PTC can be contiddiea fine
level of granularity. The detection of operator itatzlity will
be explained later when we present the switchiggriahm.

As a phrase group only contains a finite nundfgphrases,
multiple phrase groups can be prepared to cope théhcase
when the operator is still unavailable after thearion of a
whole phrase group has finished. A “random selégsansed to
randomly select a group after each execution dfrage group.
The reason for randomly selecting a group is thertet are often
bystanders when the robot is talking to a custoraed this

impression that robots are always saying the s&ing tvhen
meeting any customer.

Proactive timing control can effectively preteronflicts
between critical phases. When multiple interactiarmesabout to
enter critical phases, the robots that cannot temaed by the
operator will perform PTC to delay the entrancehe critical
phase. From a customer’s perspective, PTC is exedwfore
asking any question, while it is still the robdttarn” to speak,
and thus the extra behaviors seem to naturallgiate into the
flow of interaction.

2) Conversational Fillers

Conversational fillers have been studied in][Bs a
technique to mitigate a customer’s frustration whilaiting.
They can be used in critical phases when the custdras
finished asking the question, but when it willldiid some time
before the operator will finish operation. Duringch time, the
robot can use conversational fillers to mitigate thistomer’s
frustration by saying phrases such as “well.. & the think...”,
“you know...”, or “uh...” Experiments [11] show tha
conversational fillers successfully moderate cusian
negative impressions towards long wait times.

C. Audio Buffering

Audio buffering is a technique to prevent logsmformation
and enable operators to respond quickly when atifihase
conflicts happen. The audio from the conversatievben the
customer and the robot is recorded into a buffeeézh robot,
thus even if the operator switches to a robot #fteinteraction
has begun, it is still possible to listen to evemyy the

customer has said.
Audio Buffer

— A AMMAAWAAN

Customer Utterance

T_ask

Operator Listening

>
>

T_delay Time

Fig. 5. Audio buffering and operator listening time

T_listen

Fig. 5 illustrates the implementation of audioffering.
When the robot has finished speaking, it is assuthatithe
customer utterance begins, and the buffer begiosrdang
audio. If the operator is switched to that robanstime after
this point, buffered audio is played back from ttart of
customer utterance.

Buffered audio can be played with faster spedile
maintaining audibility, which enables the operatospend less
time to listen than the actual customer utterancaten. If we
let K denote playback speed, then listening titisten ) is a
function of operator delatdelay ) and customer askimgt
(task), as in (3). The maximum is taken because lisgcan’t
end before a customer finishes asking a question.

random variation can help avoid giving customer® th
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Liisten = max{task - tdelay' task/K}

®3)

phase. To utilize the algorithm, we need a validirestion of
operation time before operation has actually begagrnin (1), we

Audio buffering can help ensure that no loss ofMmodeloperationtime asa combination of listering actuation

conversational information occurs when the operator
switched to a robot after the critical phase hasted. In
addition, by using fast-playback, the operator sdeds time
to listen to a customer’s question, which shortidsoverall
operation time.

D. Switching Algorithm

We next present a switching algorithm used

assignment and robot phase planning based on #wopsly
introduced techniques.
1) Basic Mechanism

Non-
Interactive

Post-
Critical
—— |

Critical Queue Pre-Critical Queue

PTC PTC

Critical Critical

|:|: The robot with operator :l: Robots without operator
Fig. 6. Queuing of robots for operator assignment

As in Fig. 6, two FIFO queues, called the “pritical queue”
and “critical queue,” are maintained for robotgie-critical and
critical phases, sorted by phase start time. Tleeadpr is always
assigned to the robot at the head of the critic&lug, which is
the first robot that started the critical phase.

There is a function for detecting whether arerafor is

available, which returns “true” if the operator danassigned to ¢ o ot Ei[Q(D)]

the robot on time, and “false” otherwise. Usingtfalayback,
the critical phase can actually start slightly befthe operator is
assigned, by an amount equal(1 — 1/K)
asking time, because the operator’s listening iml/K of the
asking time. Hence, by comparing the estimatedatjwer time
of the robots in the critical queue agai(l — 1/K)  otomeer
asking time, the decision of operator availabifity a robot in
the pre-critical queue can be made as follows:

FUNCTION Is-Operator-Available (Robot R)
If (R is the head of pre-critical queue)
If ZiCrlthal auene Eoperation(i) < (1 - 1/K) ' Eask
( )
Return true;
Else
Return false;
Else
Return false;
End

Here,foperation(i) is the estimated operation time for i-th

robot in the critical queue, which will be compamsith start-
ahead time to decide whether to let a robot prote#uk critical

iar o
teleoperation system which handles automatic operaf)

of the custom

times, wherein listening time can be given from #stimated
customer asking time, operator delay, and audip-Ipéeck time,
as in (3). The next subsection will discuss amesiion method
for actuation time.

2) Estimation of Actuation Time
In this section, we discuss the method of estingatin
perator’s actuation time when multiple input methexist in
a teleoperation interface.

In a teleoperation interface, there can be multipleut
methods with different layouts and functionalitiaad usually
it is impossible to tell in a deterministic way whione will be
used until the operation has begun. But if we aegtine
knowledge about the probabilities of each inputhudtto be
used from statistics of a large nhumber of operatiave can
make a best estimation of operation time in a fodissic way.

Suppose there are different input methods, and the
probability distribution of actuation time for eaiciput method
is known. LetP; denote the probability of thth input method
to be used. Then, a penalty function in terms afs lof
satisfaction can be defined by (4), whice tad otien
estimated and actual actuation times, and Aind trare
penalties in customer satisfaction incurred wherongr
estimation increases customer wait time, accortin@).

a(t, —t,),whent, >t,

Qte, ty) = { B(t, — t.), otherwise

(4)

) denote the expected penalty for input
methodi, then we can calculate it by integrating the pgmnal
value over the entire time span for actuation tassuming the
ffobability density function of actuation time isdwn. For
simplicity, we use a normal distribution to repmsdhe
distribution of actuation time for each input meth@hen, the
expected penalty for theth input method can be calculated by
(5), wheref (x; i, a?) is the probability density functionaof
normal distributiorN (&, 97) for the actuation time of tih
input method. Although other distributions can tsedi for
modeling actuation time, as will be discussed mghction of
operator data collection, the normal distributi®sufficient for
describing operator actuation time in this stud¥he expected
penalty for estimation is the expectation from all possible
input methods weighted by the probabilities of these, as in
(6). The safest estimate of actuation tifactuation ) keta
as the time which minimizes the expected penakyina(7).
Finally, the estimated operation time can be cated as the
sum of listening and actuation time, by combinidy (3) and

).

E[Q(®)] =f £y, 0)Q(t, x)dx -
0
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EQ(®) = ) pE(®)]
Eactuation = arl‘;lolgi(nm E[Q(t)]

(6)
()

As an example, Fig. 7 shows the expected pesalt
measured by satisfaction values when there ares timgut
methods, namely simple choice, list choice anchiyisee Sec.
V-C for detailed explanation about each input mdjheach
with actuation time bein¢N(1.9,0.6%)  N(3.1,1.9%)
N(32.9,11.9%) seconds, and have the same probab1/3(
of being used. As the figure shows, when estimadictgation
time to be 22 seconds, the expected penalty isnihenum,
which is the best estimation.

2.5

2.25

yd

\/

10

0 5 15 20 25 30 35 40

Expected Penalty in Satisfaction

Estimated Actuation Time (s)
Fig. 7. Estimation of actuation time and expectedgity

V. MEASURINGMODEL PARAMETERS. USERSTUDY

A. Scenario

Data collections were conducted to obtain hudeta for our
models of the customer and operator. To investitfeempact
of complexity in dialog-based interactions, two remgos were
used.

e Guide scenario We assume that robots are working at
shopping center to provide route guidance. Custsrask
guestions about where some shops are, and robetean
the locations accordingly.

evaluation when acting as a customer. Basic compgitks for
daily life were required for participants actingaerators.

B. Customer Data Collection Brocedure

Fifteen people participated (8 female, 7 malean 22 years
old). Each participant took part in both scenariber each
scenario, participants performed 16 interactiorth &irobot by
asking different questions.

Two aspects of the robot’s behavior were vatedveen
interactions. First, the duration of the robot’®sgh preceding
the asking of the question, which corresponds ¢atithe when

)PTC behaviors would be executed, was varied amot§,B0,

and 45 seconds. Second, the delay until the raspanded to
the question in the Critical phase was varied antyrig 10, and
15 seconds. Conversation fillers were used duthig waiting
time. In total, this resulted in 16 variations ohihg settings.
After each interaction, participants evaluated rtisatisfaction
with an integer value from -5 to 5, where -5 andnh8icate
maximum negative and positive satisfaction. Eagmnado was
repeated twice to counter-balance the orderingeffe

2) Results

Fig 8 shows the average satisfaction valuegdoh scenario.
The values form approximate planes in 3-D spaaticating
that satisfaction is approximately linear in both@Pand wait
time. By linear regression analysis using leastaseg)
parameters of (1) were calculated as in Table kigitn
coefficientsR? are 0.970 and 0.967 for each sceparitch
indicate very good fitting). Asking and answeringes were
also measured, whegeands are mean and standard deviation.

TABLE |
PARAMETERS FROMCUSTOMERDATA COLLECTION

Customer Robot

Scenarios| s g Asking Time An§wering
0 a (s) Time (s)

M 4 ] 4
Guide 3.65| 0.07| 0.18| 4.1 14 5.1 0.6
a  Seller 3.68| 0.04| 0.14| 5.8 1.8 10.6 1.7

It was verified thaa <f for both scenarios, meagni
people are generally more patient when waiting teetban

»  Seller scenario Robots are assumed to be working after asking. In the seller scenarig,iSlarger an& apBI are
sellers at a PC shop. Customers come to ask varigialler, indicating that customers tend to be npagent in

questions related to PC’s or peripherals, and sopaivide
accurate answers. Generally, such questions hayleeti
complexity compared to the first scenario. Tinst
scenario represents a context in which customersnaa
hurry and interactions are short. The second oabadsit a
relatively complex scenario, when customers arémsiich
a hurry but need detailed information.

Portrait of participants

Undergraduate Japanese students were recrigtedata
collections regardless of whether they had any dpacknd in
robotics. We did not allow the same participantsale part in
both data collections for operator and customergabse
knowing how robots are operated may affect a ppeit’'s

that scenario. This seems to show that people&raonte of
wait time is different depending on interaction gbexity.
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Fig. 8. Customer satisfaction in different scergrio

C. Operator Data Collection

We conducted another data collection to measuneatch
time for robot operators, as a function of the inpethod used.
1) Procedure

For the operator data collection, sixteen peoplé(idale, 9
male, mean 21 years old) participated in the twenaros.
Instead of setting up real robots and customersregerded
audio from customer questions asked in the previdata
collection, and used it to simulate customer-sidleractions. To
explore the effect of input method on actuationetimperation
time was measured using three input types: binhojce, list
choice and typing. For the binary choice interfdes choices,
including the correct response, were shown. Thie dimice
interface was similar, but instead 20 choices \sbwvn. For the
typing interface, the operator directly entered @hewer into a
text field. Actuation time was measured as the tihumgrom the
end of audio play-back to the end of each operathithin each
of the two scenarios, the mean and standard dewiatiere
computed for the measured actuation times for dapht
method.2) Results

Table Il shows the result in terms of mean atehdard
deviation of actuation time for each input typdslhecessary to
find a mathematical model to approximate the distion of
actuation time in order to estimate operation tiee candidate
is the normal distribution, which describes therihstion when
most actuation times fall

symmetrically distributed. Another candidate comigyarsed in
queueing theory [33] is the exponential distribatiavhich
assumes an equal probability of actuation finishaigany
moment, resulting in a long-tailed probability distition. From
an examination of the measured data points, wedfdbat the
normal distribution closely fits with our data sehd thus we
used it as an approximation of actuation time iistion in this
study.

The data collection results indicate that the inméthod
greatly affects the operator's actuation time. Attn time
increased as the complexity of operation increasti, typing
time substantially longer than the other two inpgthods, and
selection from list choices took longer than binahpice. The
operation of the seller scenario took longer thae guide
scenario for each interface, which we attributéhte increased
time required for both problem solving and commerplression
caused by the increased complexity of the conversabntext.

In real-world applications, it is difficult talevelop an
interface in which all operations can be made mp$ inputs,
because of the difficulty of predicting what uttecas will be
necessary in a social interaction. Unexpected tiitus will
require the operator to perform lower-level contsach as
typing. Hence, situation coverage, described irti&edlI-D,
affects operation efficiency, as it influences greportion of
operations which can be made by simple or compiputs.

TABLE Il
MEASURED ACTUATION TIME FOR DIFFERENT INPUT TYPES
Binary List Typing
Input Types guide | seller | guide | seller | guide | seller
. . u| 19 2.2 3.1 5.5 329 | 45.0
Actuation Time (S) = 56159 | 10 | 48 | 11.9 | 185

near a mean value and are

VI. INTERACTION STUDY USING SIMULATION

This modeling enables us build a simulation! téar
studying social human-robot interactions in gresadl. In this
section, we will present the mechanism of the satioih tool,
and present experimental results to validate itsi@cy. Then,
we will explore the effects of different techniquesd
configurations on the performance of a human-raieam

using simulation.
A. Simulation Tool

7 \
Simulator

5 ' Customer-Robot

perator | || Simulated Simulated  [[7| Interaction Model
Model Operator Robots

— T
Sw1tchmg |—| Situation Coverage
Algorithm

Simulated Customers

Fig. 9. Basic workflow of the simulator

J Customer
Satisfaction Model

Fig. 9 illustrates the basic workflow of thensilator. It is a
computer program simulating a world of customesbpts, and
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an operator, and it simulates interactions amoegthased on
timings specified by interaction models. Interactidetween
customers and robots are simulated using a custorbet

interaction model (Sec. 11I-B), which specifies tteucture of
interaction phases and durations of each phaseatiih

coverage (Sec. IlI-D) is an adjustable variablectgpecifies
the proportion of customer requests that are quimkbwerable.
The operator model (Sec. V-C) specifies operatijpeed for

different input methods, and the switching algarit{Sec. IV-

D) is simulated for allocating operator tasks. Temerate the
output of the simulation, the customer satisfactimodel (Sec.
V-B) is used to calculate performance resultingnfrohe

simulated interactions.

Robot 1 Robot 2 Robot 3

Robot 4

3

3

- Pre-Critical Phase - Customer Waiting

[] Operator
Assignment

!:| Customer Asking - Post-Critical Phase

Fig. 10. Visualization of simulation

During execution, the simulation generates raeline of
interaction phases. Fig. 10 shows a visualizatioone set of
simulated interactions for a human-robot team timgj of one
operator and four robots. Each column depicts itheline of
one robot’s interaction phases with the numbethéneft-hand
side indicating the durations of each phase in m#x0The
process of each phase is simulated as follows:

- Post-critical phaseThis phase includes the time required
for the robot to execute answering behaviors. $piscified
according to the scenario, designated as “RobotvAriag
Time” in Table I.

- Non-critical phaseWe simulate frequent customer arrivals
with a normal distribution oN(5,2*) seconds between
interactions in all the simulations.

As the output of the simulation, customer $atison can be
calculated using by (2), wherein the waiting tiraes counted as
follows:

- thefore: the duration of pre-critical phase.

- tafter: the duration of operator’s response time.

From the satisfaction results of the individumdractions,
we calculate the team’s performance as the surnstbmer
satisfaction from all robots per unit amount ofei@s in (8),
supposincVr is the number of robcNi,  is the nurober
interactions conducted by i-th robot, Satisfactionj g the
satisfaction value of j-th interaction conductedths i-th robot.
This equation reflects the efficiency of the rotesm in

“producing” customer satisfaction in a unit amoahtime.

Ny oN; , . i
X" X;' Satisfaction;

Total Time

Performance =

(8)

B. Validation of Simulation

An experiment was conducted to determine whethe
simulation can provide a reliable result in compami with
human operators. Fifteen people participated (&fen® male,
mean 20 years old).

1) Procedure

The validation was conducted by comparing
performance of robot teams (a) operated by pagtitgpand (b)
from simulation, for each team size from 1 to 8thé two
conditions provide similar results for each numbkrobots,
it will verify that simulation can provide trustwbly estimation.
For condition (a), we did not set up real robotd anstomers,
but instead recorded audio of people asking questad used
them to reproduce customer requests. By providpeyators
with an experience similar to that of real telegpien, we
expect that operation time will be similar to thata real robot
operation task. Since the objective of this evaduatvas to
verify if simulation can provide similar timing cqrared to

the

- Pre-critical phase Proactive timing control is simulated tohuman operators, such settings are enough to dereesalid
control the length of this phase. This phase ordggeds to comparison. For condition (b), the measured inte&vatiming

the next when the operator is available or antteighdo be
available shortly, as described in Section IV-D.

parameters in Tables | and Il were used in the Igitioun.
The guide scenario as described in Section Wa& set for

- Critical phase This phase includes the customer’s questidPth conditions. Situation coverage was set to 98t list

to the robot and the operator’s response, inclulistening
time and actuation time. The distributions of custo

asking time and operator actuation time were obthin

through data collection, shown in Tables | andahd
listening time is calculated using by (3).

choice and typing available for covered and uncewer
situations, respectively.
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2) Results

Fig. 11 shows the comparison of mean perfor@dinom
simulation and participants, where standard erfpadicipant
data is also depicted. Although slight differenicesome data
points exist due to variation of performance byipgrants, the
changes of performance show the same trend, ahdémitlts
indicate the fan-out being 3 by forming performaptseaus
of similar shapes. Thus, we can conclude that sitioun
provides reasonable estimation regarding actudbpeance
when using data measured from real interactions.

Operation
15
Simulation
10 j‘{-r\ﬂ\‘r
Q
g >
H 5
E
5 0
8 N
& -5 \
-10
-15
1 2 3 4 5 6 7 8
Number of Robots

Fig. 11. Comparison of performance between humanatprs and simulation

C. Interaction Studies with Simulation

We conducted simulations to explore the effectdifferent
techniques and metrics on the performance of a htnwiaot
team. First, we conducted validations on the eiffeoess of
using interaction management techniques such apliagack
and proactive timing control. Then, we explored howtrics
such as situation coverage and operation efficieffact team
performance. In the simulations described throughthis
section, we examined the guide and seller scendessribed in
Section V-A under 90% situation coverage, whereratjn
using list and typing are simulated respectivelydovered and
uncovered situations.

1) Validation of Estimation and Fast-Playback

To validate the effectiveness of the operatioe estimation
and fast-playback techniques, simulations were gotedl under
three conditions on different numbers of robotsgfach scenario.
For comparison, we simulated a baseline conditionyhich
neither technique was used — that is, robots welepermitted
to enter critical sections when an operator wasaaly available.
Then, we compared it with the conditions of usinglyo

1 Results regarding performance are expressed s ohi‘satisfaction per
minute” throughout this paper.

estimation and using both estimation and 1.5-tias¢-playback.
We did not set a condition of using only fast-plagk, because
the function of fast-playback necessarily requiessimating

operation time ahead, hence it cannot be used wtithgtimation.
The average performance from 1000 simulations, each
simulating a 10-minute teleoperation session, veésutated for
each condition.

=& Estimation and Fast-Playback

12
n Estimation Only

g 8 ] —*&— Neither
c
G 4
S
3° \ N
[}
o

“ \A_

1 2 3 4 5 6

Number of Robots

Fig. 12. Validation of estimation and fast-playbatlguide scenario
(The standard errors for each data point are bet®@e®} and 0.13.)

= Estimation and Fast-Playback
8
. Estimation Only
6
§ . / YA\ —&— Neither
5 \\\
s> \\\
5
&0 1\\‘
-2 N
-4
1 2 3 4 5 6
Number of Robots

Fig. 13. Validation of estimation and fast-playbaiseller scenario
(The standard errors for each data point are bet@e8 and 0.09.)

Results in Fig. 12 and Fig. 13 indicate thathhbmonditions
using the proposed techniques outperform the mesaliboth
scenarios. The effect of estimation is most valgavhen
combined with fast-playback, because ideally theggitical
phase can be shortened (1 —1/K)  times the asking time
when playback spe¢K! is greater than 1. Even wheasing
fast-playback, estimation is effective becausdl@vates the
need for the operator to be present while to thetres asking
for the customer’s question, which usually take8 8econds.
However, as we can see in Fig. 13, the improvetrinethie
“estimation only” condition is not as significamt the seller
scenario as it is in the guide scenario. This isabse of the
higher variance of operation time in this conditisee Table
I1), which results in a higher likelihood of wromgtimation.
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2) Validation of Proactive Timing Control
We next examined the effectiveness of proactivangm
control. For this comparison, we created a “No P&@ridition,
in which interactions go into critical phase no teatvhether
the operator is available. We compared this witwiah PTC”
condition, in which the pre-critical phase will {asntil the
operator is available. Neither estimation nor fasatback
were used in this comparison. The average perfocenénom
1000 simulations, each simulating a 10-minute feation
session, was calculated for each condition.

10 —
\\ =& \With PTC
0
\ No PTC
I+
c -10
©
£
1
£
S -20
a
-30
1 2 3 4 5 6
Number of Robots
Fig. 14. Validation of PTC in guide scenario
10
== —— With PTC
0 -
No PTC
[
e
£ .10
E
(=]
T 20 =
[-9
-30
1 2 3 4 5 6
Number of Robots

Fig. 15. Validation of PTC in seller scenario

Fig. 14 and 15 show the simulation resultsachescenario. In
both scenarios, the two conditions showed simi&fgsmance
up to the number of robots for optimal fan-out (@¥hivas 2 for
these settings), and then performance in the
“No PTC” condition dropped severely for larger nuerd of
robots. The simulation results indicate that theopdrof
performance can be greatly reduced for larger nusniferobots
when using PTC, because the customer's waiting tiakes
place mostly in the pre-critical phase, causing lafsa drop in
satisfaction compared with waiting in the critiphlase.

3) Effect of Situation Coverage

We evaluated the effect of situation coveragedmparing
situation coverage settings of 100%, 90%, 80%, #0fkb 60%
for the two scenarios. The 100% situation coveremedition
represents the extreme case when all operationde&anade
using list choice, while 60% condition simulatessituation

where a large proportion of operations need typling average
performance from 1000 simulations, each simulatind.O-
minute teleoperation session, was calculated foin eandition.

25
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15 ~ \“
10 _.4 _ ——5C 100%
8 i S
g ST E— SC 90%
©
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£ SSRL A — —4—SC 80%
s SSEBNO
& -10 S s —H&—sCc70%
-15
- T 0 —e—sce0%
1 2 3 4 5 6
Number of Robots
Fig. 16. The effect of situation coverage in gusdenario
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Number of Robots

Fig. 17. The effect of situation coverage in sedieenario

As Figs. 16-17 show, the performance increasesituation
coverage increases in both scenarios. The reasdnigachange
in performance and fan-out is that situation cogeraffects the
statistical distribution of operation time. Equati®) shows that
the mean operation time can be estimated as thpopional
expectation of operation time for covered and ueced
situations. For example, using the timing data fiable I, we
can calculate the expected operation times in thgegscenario
for SC values of 100% and 90% to be 3.1 and 6.brekc
respectively, which means the operation speed whkn
situations are covered is almost twice as fastoa®99% SC,
which results in a large improvement of performance

top = top_covered -SC+ top_uncovered “(1-SC)

)

4) Effect of Operation Efficiency

We next evaluated the effect of operation &fficy on
performance by simulations with different valuespgration
time for the two scenarios. The baseline condition this
comparison used the operation times measured ia dat
collection. We compared this with operation timé&8@and
50% faster and slower. Situation coverage wasss20% with
list and typing inputs. The average performancenfrtO00
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simulations, each simulating a 10-minute teleopemegession,
was calculated for each condition.

15 L
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5 175 ”;
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Q
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Fig. 18. The effect of operation efficiency in geiscenario
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Fig. 19. The effect of operation efficiency in selécenario

Figs. 18 and 19 show the simulation resultsaoh scenario.
Similar to the effect of situation coverage, chan§®peration
time causes change of performance and fan-out, fasker
operation resulting in higher performance and larg®-out
numbers. These results indicate that reducing tiparime is
an effective way of improving team performance phactice,
improvement of operation efficiency could come fronterface
design and training effects. A concrete exampléngfroving
operation efficiency through good interface desigd operator
training will be given in the next section.

VII. DEPLOYMENT USING SIMULATION : A CASE STUDY

In this section, we present a case study itogamy multiple
social robots for a real-world application. Theg@zh goal is to
verify the effectiveness of simulation as a stréogl in each
stage of the development process, which finallyd$edo a
successful deployment of a human-robot team irfidthe

A. Scenario

A large shopping mall containing more than 8 and
other facilities wanted to use social robots toaatt customers
by providing some useful service for its anniveysduring a
period of four days. Our task was to deploy rolvatéch could
provide services including route guidance and imfation
provision given one month for

anniversary. Using a larger number of robots wafepable
because they can attract more customers in the aament of
time, but the quality of service should also bergnteed when
the number of robots increases.

B. Setup

ROBOVIE-II humanoid communication robots weeed in
our case study. The teleoperation interface foitrotlimg the
robots is shown in Fig. 20. It contains a texteech
component (area “a”), lists (area “b”") of pre-buikthaviors for
answering questions, and a map interface (area bg"which
the pre-built route guidance behaviors can be érigd when
each button representing a shop is clicked.

20. The teleoperation interface

C. Procedure

M
g Behavior Design |
k|
=
= | l
2] Ul Design & Training
— !
M
Test of SC
9
z | |
Deployment

|\
Fig. 21. The eploymenprocedur :

We divided the deployment procedure into sdvstages
with each stage focused on specific tasks, as shiowig. 21.
The preparation stages include behavior desigredign and
operator training, wherein simulation was used s$tineate
performance and verify the completeness of eagfesthe last
two stages needed robots working in the field.sh o situation
coverage was conducted before actual deploymedtrabots
were deployed for four days of the anniversary ogoed
performance could be ensured through the previtages.
During the time when the robots were deployed énsthopping
mall, real performance was measured based on castom
waiting time.

D. Results
We present the results of the whole procestudimg

preparation  beforee thyeharations and field deployment. For the prejmmattages,
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we state the tasks and how simulation was usecelo dur
tasks in each stage; for deployment results, wevshctual
performance of robots working in the field.

1) Behavior Design

At the first stage, robot behaviors for answgrtustomers’
questions were designed and implemented. The tafgéis
stage was to implement a sufficient number of built
behaviors to achieve a certain level of situatiomectage in
order to enable more robots to be deployed.

We calculated the lower boundary of situati@mverage
necessary for different fan-out targets by simatatithe
performance using various values of situation cager as we
did in Section VI. The model parameters for simolatwere
chosen from the guide scenario data in Table iafhich

140

13
Fan-out 1 2 3 4
Lower From data collection | 40% | 83% | 91%
boundary | 1stoperator training | 52% | 99% | ---
of SC 2 operator training | 41% | 84% | 91% | --
To gain some knowledge about the relationsrepvben

situation coverage and required number of robotbiens, we
refer to a previous study in [7], wherein a roboiyided route
guide service in a shopping mall. By implementingide
behaviors for all possible shops and facilitiesjation coverage
reached over 98% on average per?ddjis indicates that the
91% situation coverage necessary for using threetsoshould
be possible if we can implement enough behavidareeSusing
more robots can attract more customers for the mhgpmall,
we set our target to use three robots, which isrtheimum fan-
out for this application when situation coveragevsr 91%.
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Fig. 22. (a) The number of implemented behavidks){(b) Fan-out from simulatiorX{),
(c) Mean operator actuation time for the list clecdnd map inputs(, (d) Situation coverage®) during the field trial

corresponds to the scenario of our case study.diffezence
was that the system for our case study includedap“choice”
entry interface, but no “binary choice.” We modeltds
difference by eliminating binary choice from the aeb and
using the list input actuation time from the daddlexction for
both map and list inputs in the case study, siheentimber of
options in the map interface and the list interfaege similar.
We thus modeled list/map choice as being used duered
situations, and typing for uncovered situationse Tésults are
shown in the first row of Table lll, indicating th&0%
situation coverage would allow operation of oneotolwith
positive performance, 83% would enable two, ancagaimum
of three robots could be controlled with situat@mverage of
at least 91%. These results also show that eveituiétion
coverage is increased up to 100%, four robots wadd
perform better than three.

TABLE Il
MINIMUM SITUATION COVERAGE REQUIRED FOR DIFFERENT FR-OUTS (WITH
POSITIVE PERFORMANCE IN GUIDE SCENARIO

2 We refer to the “knowledge provider” operationsiasovered situations in
that paper.

In Fig. 22, graph (a) sho